The Elliptic Algebra $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ and the Deformation of W_N Algebra

Takeo KOJIMA * and Hitoshi KONNO **,†

* Department of Mathematics, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-0062, Japan. E-mail: kojima@math.cst.nihon-u.ac.jp

** Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan. E-mail: konno@mis.hiroshima-u.ac.jp

† Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

Abstract

After reviewing the recent results on the Drinfeld realization of the face type elliptic quantum group $B_{h,\lambda}(\widehat{\mathfrak{sl}}_N)$ by the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_N)$, we investigate a fusion of the vertex operators of $U_{q,p}(\widehat{\mathfrak{sl}}_N)$. The basic generating functions $\Lambda_j(z)$ ($j = 1, 2, ..., N - 1$) of the deformed W_N algebra are derived explicitly.
1 Introduction

In a recent paper [1, 2, 3], we showed that the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ provides the Drinfeld realization of the face type elliptic quantum group $\mathcal{B}_{q,\lambda}(\widehat{\mathfrak{sl}}_N)$ tensored by a Heisenberg algebra. Based on this fact, we defined the $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ counterparts of the intertwining operators of the $\mathcal{B}_{q,\lambda}(\widehat{\mathfrak{sl}}_N)$ modules and obtained their free field realization in the level one representation. The resultant vertex operators, called the vertex operators of $U_{q,p}(\widehat{\mathfrak{sl}}_N)$, are identified with the vertex operators of the RSOS model associated with $\widehat{\mathfrak{sl}}_N$ in the algebraic analysis formulation[5]. In general, we expect that the elliptic algebra $U_{q,p}(\mathfrak{g})$ with \mathfrak{g} being an affine Lie algebra provides the Drinfeld realization for the elliptic quantum group $\mathcal{B}_{q,\lambda}(\mathfrak{g})$ and enables us to perform an algebraic analysis of the \mathfrak{g} type RSOS model.

On the other hand, the $\widehat{\mathfrak{sl}}_N$ RSOS model is known as an off-critical deformation of the W_N minimal model[6]. In this relation, it is remarkable that the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ in the $c = 1$ representation coincides with the algebra of the screening currents of the deformed W_N algebra [7, 8, 9]. In general, we expect that the elliptic algebra $U_{q,p}(\mathfrak{g})$ provides an algebra of screening currents of the deformation of the coset CFT associated with $(\mathfrak{g}_c \oplus (\mathfrak{g})_{r-c-2}/(\mathfrak{g})_{r-2})[1, 2]$.

The purpose of this paper is to continue to find an explicit relation among the elliptic algebra $U_{q,p}(\mathfrak{g})$, the \mathfrak{g} type RSOS model and the deformation of $W(\mathfrak{g})$ algebra in the case $\mathfrak{g} = \widehat{\mathfrak{sl}}_N$. We here investigate a fusion of the type II vertex operator of $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ and its dual, and show that the generating functions of the deformed W_N algebra can be extracted from it. The idea of fusion of the vertex operators was used in [10, 11] to derive the generating function of the deformed Virasoro algebra (corresponding to the $\phi_{1,3}$ perturbation) from the ABF model in regime III, in [12] for the deformed W_N algebra with the central charge $c_N = (N - 1) \left(1 - \frac{N(N+1)}{r(r-1)}\right)$ at special point $r = N + 2$ (the \mathbb{Z}_N parafermion point) from the ABF model in regime II, and in [13] for the deformed Virasoro algebra (corresponding to the $\phi_{1,2}$ perturbation) from the dilute A_L model.

This article is organised as follows. In the next section, we briefly review the elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ as the Drinfeld realization of the elliptic quantum group $\mathcal{B}_{q,\lambda}(\widehat{\mathfrak{sl}}_N)$. We give a summary of the results on the free field realization of the vertex operators of $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ obtained in [3]. In the section 3, we discuss a fusion of the vertex operators of $U_{q,p}(\widehat{\mathfrak{sl}}_N)$ and a derivation of the generators of the deformed W_N algebra.

Through this paper, we use the following symbols. $p = q^{2r}$, \(p^* = pq^{-2c} = q^{2r^*} \) \((r^* = r - c; \ r, r^* \in \mathbb{R}_{>0}) \),

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}.$$
\[\Theta_p(z) = (z, p)_\infty (p z^{-1}, p)_\infty (p, p)_\infty, \]
\[\{ z \} = (z; p, q^{2N})_\infty, \quad \{ z \}^* = \{ z \}^p \]
\[(z; t_1, \cdots, t_k)_\infty = \prod_{n_1, \cdots, n_k \geq 0} (1 - z t_1^{n_1} \cdots t_k^{n_k}). \]

We also use the Jacobi theta functions
\[[v] = q^{\frac{v}{2} - v} \Theta_p(q^{2v}) (p; p)_\infty^3, \quad [v]^* = q^{v - v} \Theta_{p^*}(q^{2v}) (p^*; p^*)_\infty^3, \]
which satisfy \([-v] = -[v]\) and the quasi-periodicity property
\[[v + r] = -[v], \quad [v + r \tau] = -e^{-\pi i r - 2\pi i v} [v]. \]

We take the normalization of the theta function to be
\[\int_{C_0} \frac{dz}{2\pi i z} \frac{1}{-[v]} = 1, \]
where \(C_0\) is a simple closed curve in the \(v\)-plane encircling \(v = 0\) anticlockwise. The same holds for \([v]^*\), with \(r\) replaced by \(r^*\), except for the normalization
\[\int_{C_0} \frac{dz}{2\pi i z} \frac{1}{-[v]^*} = \left[\frac{[v]}{[v]^*} \right]_{v \to 0}. \]

2 The Elliptic Algebra \(U_{q,p}(\hat{\mathfrak{sl}}_N)\)

2.1 Definition

Definition 2.1 (Elliptic algebra \(U_{q,p}(\hat{\mathfrak{sl}}_N)\)) We define the elliptic algebra \(U_{q,p}(\hat{\mathfrak{sl}}_N)\) to be the associative algebra of the currents \(E_j(v), F_j(v)\) (\(1 \neq j \neq N - 1\)) and \(K_j(v)\) (\(1 \neq j \neq N\)) satisfying the following relations.

\[E_i(v_1) E_j(v_2) = \frac{[v_1 - v_2 + \frac{A_{ij}}{2}]}{[v_1 - v_2 - \frac{A_{ij}}{2}]} E_j(v_2) E_i(v_1), \]
\[F_i(v_1) F_j(v_2) = \frac{[v_1 - v_2 - \frac{A_{ij}}{2}]}{[v_1 - v_2 + \frac{A_{ij}}{2}]} F_j(v_2) F_i(v_1), \]
\[[E_i(v_1), F_j(v_2)] = \frac{\delta_{i,j}}{q - q^{-1}} \left(\delta(q^{-c} z_1 / z_2) H_j^+ (v_2 + \frac{c}{4}) - \delta(q^c z_1 / z_2) H_j^- (v_2 - \frac{c}{4}) \right), \]
\[H_j^\pm \left(v + \frac{1}{2} \left(r - \frac{c}{2} \right) \right) = \mp K_j \left(v + \frac{N - j}{2} \right) K_{j+1} \left(v + \frac{N - j}{2} \right)^{-1}, \]
\begin{align}
K_j(v_1)K_j(v_2) &= \rho(v_1 - v_2)K_j(v_2)K_j(v_1), \\
K_{j_1}(v_1)K_{j_2}(v_2) &= \rho(v_1 - v_2)\left[\frac{v_1 - v_2 - 1}{v_1 - v_2}\right]^*\frac{v_1 - v_2}{v_1 - v_2 - 1}K_{j_2}(v_2)K_{j_1}(v_1) \\
& \quad (1 \leq j_1 < j_2 \leq N), \\
K_j(v_1)E_{j}(v_2) &= \frac{[v_1 - v_2 + j + r - N]}{[v_1 - v_2 + j + r - N - 1]}E_{j}(v_2)K_j(v_1), \\
K_{j+1}(v_1)E_j(v_2) &= \frac{[v_1 - v_2 + j + r - N]}{[v_1 - v_2 + j + r - N + 1]}E_j(v_2)K_{j+1}(v_1), \\
K_{j_1}(v_1)E_{j_2}(v_2) &= E_{j_2}(v_2)K_{j_1}(v_1) \quad (j_1 \neq j_2, j_2 + 1),
\end{align}

\begin{align}
K_j(v_1)F_j(v_2) &= \frac{[v_1 - v_2 + j + r - N - 1]}{[v_1 - v_2 + j + r - N]}F_j(v_2)K_j(v_1), \\
K_{j+1}(v_1)F_j(v_2) &= \frac{[v_1 - v_2 + j + r - N + 1]}{[v_1 - v_2 + j + r - N]}F_j(v_2)K_{j+1}(v_1), \\
K_{j_1}(v_1)F_{j_2}(v_2) &= F_{j_2}(v_2)K_{j_1}(v_1) \quad (j_1 \neq j_2, j_2 + 1),
\end{align}

\begin{align}
& z_1^{\frac{1}{2}} \frac{(p^* q^2 z_2/z_1; p^*)_\infty}{(p^* q^{-2} z_2/z_1; p^*)_\infty} \left\{ (z_2/z)^{\frac{1}{2}} \frac{(p^* q^{-1} z/z_1; p^*)_\infty(p^* q^{-1} z_2/z_1; p^*)_\infty}{(p^* q z/z_1; p^*)_\infty(p^* q z_2/z_1; p^*)_\infty} E_i(v_1)E_i(v_2)E_j(v) \\
& \quad \quad - 2q^{\frac{1}{2}} \frac{(p^* q^{-1} z/z_1; p^*)_\infty(p^* q^{-1} z_2/z; p^*)_\infty}{(p^* q z/z_1; p^*)_\infty(p^* q z_2/z; p^*)_\infty} E_i(v_1)E_j(v)E_i(v_2) \\
& \quad \quad + (z/z_1)^{\frac{1}{2}} \frac{(p^* q^{-1} z_1/z; p^*)_\infty(p^* q^{-1} z_2/z; p^*)_\infty}{(p^* q z_1/z; p^*)_\infty(p^* q z_2/z; p^*)_\infty} E_j(v)E_i(v_1)E_i(v_2) \right\} + (z_1 \leftrightarrow z_2) = 0, \\
& z_1^{\frac{1}{2}} \frac{(p q^{-2} z_2/z_1; p)_\infty}{(p q^2 z_2/z_1; p)_\infty} \left\{ \frac{(z/z_2)^{\frac{1}{2}}}{(p q^{-1} z/z_1; p)_\infty(p q^{-1} z_2/z_1; p)_\infty} F_i(v_1)F_i(v_2)F_j(v) \\
& \quad \quad - 2q^{\frac{1}{2}} \frac{(p q^{-1} z/z_1; p)_\infty(p q z_2/z_1; p)_\infty}{(p q^{-1} z_1/z; p)_\infty(p q^{-1} z_2/z; p)_\infty} F_i(v_1)F_j(v)F_i(v_2) \\
& \quad \quad + (z_1/z)^{\frac{1}{2}} \frac{(p q z_1/z; p)_\infty(p q z_2/z; p)_\infty}{(p q^{-1} z_1/z; p)_\infty(p q^{-1} z_2/z; p)_\infty} F_j(v)F_i(v_1)F_i(v_2) \right\} + (z_1 \leftrightarrow z_2) = 0 \quad (|i - j| = 1).
\end{align}

Here $A = (A_{jk})$ is the Cartan matrix of \mathfrak{sl}_N. The constant \Box and the functions $\rho(v)$ are given by

\begin{align}
\Box &= \frac{(p; p)_\infty(p^* q^2 z; p^*_%)_\infty}{(p^*; p^*_%)_\infty(p q^2 z; p)_\infty}, \\
\rho(v) &= \frac{\rho^{++}(v)}{\rho^+(v)}, \\
\rho^+(v) &= q^{N-1} z^{N-1} \frac{\{p q^2 z\} \{p q^{2N-2} z\} \{1/z\} \{q^{2N} z^2\}}{\{p z\} \{p q^{2N} z\} \{q^{2} z^2\} \{q^{2N-2} z^2\}} \rho^{+-}(v) = \rho^+(v)|_{r \rightarrow r^*}.
\end{align}
2.2 Realization of $U_{q,p}(\hat{sl}_N)$

The elliptic algebra $U_{q,p}(\hat{sl}_N)$ can be realized by using the Drinfeld generators of $U_q(\hat{sl}_N)$ and a Heisenberg algebra. Let h_i, a_i^\pm, x_i^\pm (i = 1, \cdots, N - 1 : m \in \mathbb{Z} \neq 0$, $n \in \mathbb{Z}$), c, d be the standard Drinfeld generators of $U_q(\hat{sl}_N)$[14]. Their generating functions $x_i^\pm(z)$, $\psi_i(z)$, $\varphi_i(z)$ are called the Drinfeld currents.

$$x_i^\pm(z) = \sum_{n \in \mathbb{Z}} x_{i,n}^\pm z^{-n}, \quad (2.18)$$

$$\psi_i(q^\pm z) = q^{h_i} \exp \left((q - q^{-1}) \sum_{m>0} a_{i,m} z^{-m} \right), \quad (2.19)$$

$$\varphi_i(q^{-\pm} z) = q^{-h_i} \exp \left(-(q - q^{-1}) \sum_{m>0} a_{i,m} z^m \right) \quad (i = 1, \cdots, N - 1). \quad (2.20)$$

Let us define the auxiliary currents $u_i^\pm(z,p)$ (i = 1, 2, \cdots, N - 1) by

$$u_i^+(z,p) = \exp \left(\sum_{m>0} \frac{1}{[r^m]_q} a_{i,-m} (q^r z)^m \right), \quad (2.21)$$

$$u_i^-(z,p) = \exp \left(-\sum_{m>0} \frac{1}{[r^m]_q} a_{i,m} (q^{-r} z)^{-m} \right). \quad (2.22)$$

Definition 2.1 We define “dressed” currents $e_i(z,p)$, $f_i(z,p)$, $\psi_i^\pm(z,p)$, (i = 1, \cdots, N - 1) by

$$e_i(z,p) = u_i^+(z,p)x_i^+(z), \quad (2.23)$$

$$f_i(z,p) = x_i^+(z)u_i^-(z,p), \quad (2.24)$$

$$\psi_i^+(z,p) = u_i^+(q^\pm z,p)\psi_i(z)u_i^-(q^{-\pm} z,p), \quad (2.25)$$

$$\psi_i^-(z,p) = u_i^+(q^{-\pm} z,p)\varphi_i(z)u_i^-(q^\pm z,p). \quad (2.26)$$

Setting $b_{j,m} = \frac{[r^m]_q}{[r^m]_q} a_{j,m}$ (for $m > 0$), $q^{c|m|} a_{j,m}$ (for $m < 0$), we introduce new generators, B^j_m (j = 1, \cdots, N; m \in \mathbb{Z})$, according to the formula

$$-B^j_m + B^{j+1}_m = \frac{m}{[m]_q} b_{j,m} q^{(N-j)m}, \quad \sum_{j=1}^{N} q^{2jm} B^j_m = 0. \quad (2.27)$$

From this and the commutation relation of the Drinfeld generators $a_{j,m}$, we derive the following commutation relations.

$$[B^j_m, B^{k}_{m'}] = m \delta_{m+m',0} \left[\frac{[r^m]_q[m]_q}{[r^m]_q[m]_q[N]_q} \right] \times \left\{ \begin{array}{ll} \frac{[(N-1)m]_q}{[m]_q} & (j = k) \\ -q^{-mNsgn(j-k)[m]_q} & (j \neq k) \end{array} \right\} \quad (2.28)$$

5
for $m, m' \in \mathbb{Z}_{\neq 0}, \; j, k = 1, \ldots, N$. Then we define new currents $k_j(z, p)$ (1 \square j \square N) by

$$k_j(z, p) = \exp \left(\sum_{m \neq 0} \frac{[m]_q}{m[r^m]_q} B_m^j z^{-m} \right).$$

(2.29)

This yields the following decomposition.

$$\psi_j^\pm (q^{\pm(r-\frac{1}{2})} z, p) = \Delta q^{\pm h_j} k_j(q^{N-j} z, p) k_{j+1}(q^{N-j} z, p)^{-1}.$$

(2.30)

On the other hand, let ϵ_j (1 \square j \square N) be the orthonormal basis in \mathbb{R}^N with the inner product $\langle \epsilon_j, \epsilon_k \rangle = \delta_{j,k}$. Setting $\check{\epsilon}_j = \epsilon_j - \epsilon$, $\epsilon = \frac{1}{N} \sum_{j=1}^N \epsilon_j$, we have the weight lattice P of type $A_{N-1}^{(1)}$: $P = \oplus_{j=1}^N \mathbb{Z} \check{\epsilon}_j$. Then, for example, the simple roots α_j (1 \square j \square $N-1$) of $s\mathfrak{I}_N$ are given by $\alpha_j = -\check{\epsilon}_j + \check{\epsilon}_{j+1}$. Let us introduce operators h_α, β ($\alpha, \beta \in P$) by

$$[h_{\check{\epsilon}_j}, \check{\epsilon}_k] = \langle \check{\epsilon}_j, \check{\epsilon}_k \rangle, \quad [h_{\check{\epsilon}_j}, h_{\check{\epsilon}_k}] = 0 = [\check{\epsilon}_j, \check{\epsilon}_k],$$

(2.31)

$h_\alpha = \sum_j n_j h_{\check{\epsilon}_j}$ for $\alpha = \sum_j n_j \epsilon_j$ and $h_0 = 0$. Note that $\langle \check{\epsilon}_j, \check{\epsilon}_k \rangle = \delta_{j,k} - \frac{1}{N}$ and $[h_\alpha, \alpha] = 2\delta_{j,k} - \delta_{j,k+1} - \delta_{j,k-1} = A_{jk}$. Hence, we identify $h_\alpha_j = -h_{\check{\epsilon}_j} + h_{\check{\epsilon}_{j+1}}$ with h_j in the Drinfeld generators of $U_q(\hat{\mathfrak{sI}_N})$.

Definition 2.2 We define the (centrally extended) Heisenberg algebra $\mathbb{C}[\hat{\mathcal{H}}]$ as an associative algebra generated by $P_{\check{\epsilon}_j}$, $Q_{\check{\epsilon}_j}$ (1 \square j \square N) and η_j (1 \square j \square $N-1$) with the relations

$$[P_{\check{\epsilon}_j}, Q_{\check{\epsilon}_k}] = \langle \check{\epsilon}_j, \check{\epsilon}_k \rangle, \quad [P_{\check{\epsilon}_j}, P_{\check{\epsilon}_k}] = 0,$$

$$[Q_{\check{\epsilon}_j}, Q_{\check{\epsilon}_k}] = \left(\frac{1}{r} - \frac{1}{r^s} \right) \text{sgn}(j-k) \log q,$$

(2.32)

(2.33)

$$[Q_{\check{\epsilon}_j}, \eta_k] = \frac{1}{r} \text{sgn}(j-k) \log q,$$

$$[\eta_j, \eta_k] = \frac{1}{r} \text{sgn}(j-k) \log q,$$

(2.34)

(2.35)

$$[P_{\check{\epsilon}_j}, \eta_k] = 0, \quad \sum_{j=1}^N \eta_j = 0,$$

$$[\eta_j, \alpha] = [P_{\check{\epsilon}_j}, U_q(\hat{\mathfrak{S}_{\mathfrak{I}_N}})] = [Q_{\check{\epsilon}_j}, U_q(\hat{\mathfrak{S}_{\mathfrak{I}_N}})] = [\eta_j, U_q(\hat{\mathfrak{S}_{\mathfrak{I}_N}})] = 0.$$

(2.36)

(2.37)

Now we define the currents $E_j(v), F_j(v), H_j^\pm(v)$ (1 \square j \square $N-1$) and $K_j(v)$ (1 \square j \square N) by

$$E_j(v) = e_j(z, p) e^{\bar{\alpha}_j} e^{-Q_{\alpha_j} (q^{-j+N} z)} \frac{r_{\alpha_j}^{-1}}{r},$$

$$F_j(v) = f_j(z, p) e^{-\bar{\alpha}_j} e^{-Q_{\alpha_j} (q^{-j+N} z)} \frac{r_{\alpha_j}^{-1}}{r},$$

$$H_j^+(v) = \psi_j^+ (z, p) q^{h_j} e^{-Q_{\alpha_j} (q^{-j+N} z) \left(\frac{1}{r} - \frac{1}{2} \right)} (P_{\alpha_j}^{-1} + \frac{1}{2} h_j),$$

$$K_j(v) = k_j(z, p) e^{Q_{\alpha_j} z \left(\frac{1}{r} - \frac{1}{2} \right)} P_{\alpha_j}^{-1} h_j - \frac{1}{r} h_j + \frac{1}{2} h_j (P_{\alpha_j}^{-1} + \frac{1}{2} h_j),$$

(2.38)

(2.39)

(2.40)

(2.41)

where $\bar{\alpha}_j = -\eta_j + \eta_{j+1}$. Then it is easy to show that $E_j(v), F_j(v), H_j^+(v)$ and $K_j(v)$ satisfy the defining relations of the elliptic algebra $U_{q,p}(\hat{\mathfrak{S}_{\mathfrak{I}_N}})$.

6
2.3 \textit{RLL relation}

We next discuss a relation between two elliptic algebras $U_{q,p}(\hat{\mathfrak{sl}}_N)$ and $B_{q,\lambda}(\hat{\mathfrak{sl}}_N)$. We construct a L-operator by using the half currents and show that it satisfies the dynamical \textit{RLL}-relation which characterizes $B_{q,\lambda}(\hat{\mathfrak{sl}}_N)$. In order to construct a L-operator, we introduce the half currents $E_{i,j}^-(v), F_{i,j}^+(v)$ and $K_j^+(v)$. We use the following abbreviations

$$P_{j,l} = -P_{e_j} + P_{e_l} = P_{\alpha_j} + P_{\alpha_{j+1}} + \cdots + P_{\alpha_{l-1}}$$

(2.42)

$$h_{j,l} = -h_{e_j} + h_{e_l} = h_j + h_{j+1} + \cdots + h_{l-1}$$

(2.43)

for $j < l$. From the definition of $C\{\mathcal{H}\}$ and (2.38)-(2.41), we have

$$[K_j(v), P_{k,l}] = (\delta_{j,k} - \delta_{j,l})K_j(v) = [K_j(v), P_{k,l} + h_{k,l}],$$

(2.44)

$$[E_j(v), P_{k,l}] = (\delta_{j,k} + \delta_{j+1,l} - \delta_{j,l} - \delta_{j+1,k})E_j(v),$$

(2.45)

$$[F_j(v), P_{j,l} + h_{j,l}] = (\delta_{j,k} + \delta_{j+1,l} - \delta_{j,l} - \delta_{j+1,k})F_j(v),$$

(2.46)

$$[F_j(v), P_{k,l}] = 0 = [E_j(v), P_{k,l} + h_{k,l}].$$

(2.47)

Now we define the half currents of $U_{q,p}(\hat{\mathfrak{sl}}_N)$ as follows.

\textbf{Definition 2.2 (Half currents)} We define the half currents $F_{j,l}^+(v), E_{i,j}^+(v), (1 \leq j < l \leq N)$ and $K_j^+(v)$ ($j = 1, \cdots, N$) by

$$K_j^+(v) = K_j\left(v + \frac{r+1}{2}\right)\quad (1 \leq j \leq N),$$

(2.48)

$$F_{j,l}^+(v) = a_{j,l} \oint_{C(j,l)} \prod_{m=j}^{l-1} \frac{dz_m}{2\pi i z_m} F_{l-1}(v_{l-1}) F_{l-2}(v_{l-2}) \cdots F_j(v_j)$$

$$\times \frac{[v - v_{l-1} + P_{j,l} + h_{j,l} + \frac{l-N}{2} - 1][1]}{[v - v_{l-1} + \frac{l-N}{2}][P_{j,l} + h_{j,l} - 1]}$$

$$\times \prod_{m=j}^{l-2} \frac{[v_{m+1} - v_{m} + P_{j,m+1} + h_{j,m+1} - \frac{1}{2}][1]}{[v_{m+1} - v_{m} + \frac{1}{2}][P_{j,m+1} + h_{j,m+1}]},$$

(2.49)

$$E_{i,j}^+(v) = a_{i,j}^* \oint_{C^*(j,l)} \prod_{m=j}^{l-1} \frac{dz_m}{2\pi i z_m} E_j(v_j) E_{j+1}(v_{j+1}) \cdots E_{l-1}(v_{l-1})$$

$$\times \frac{[v - v_{l-1} - P_{j,l} + \frac{l-N}{2} + \frac{1}{2} + 1][1]^*}{[v - v_{l-1} + \frac{l-N}{2} + \frac{3}{2}][P_{j,l} - 1]^*}$$

$$\times \prod_{m=j}^{l-2} \frac{[v_{m+1} - v_{m} - P_{j,m+1} + \frac{1}{2}][1]^*}{[v_{m+1} - v_{m} + \frac{3}{2}][P_{j,m+1} - 1]^*}.$$\hfill (2.50)

Here the integration contour $C(j,l)$ and $C^*(j,l)$ are given by

$$C(j,l) : |pq^{l-N}z| < |z_{l-1}| < |q^{l-N}z|,$$
\[
|pqz_{k+1}| < |z_k| < |qz_{k+1}|,
\]
\[
C^*(j, l) : |p^*q^{l-N+c}z| < |z_{l-1}| < |q^{l-N+c}z|,
\]
\[
|p^*qz_{k+1}| < |z_k| < |qz_{k+1}|,
\]

where \(k = j, j + 1, \ldots, l - 2\). The constants \(a_j, l\) and \(a_j^*\) are chosen to satisfy
\[
\frac{\partial a_j, l a_j^*}{q - q^{-1}} = 1.
\]

2.4 L-operator

Definition 2.3 (L-operator) By using the half currents, we define the L-operator \(\hat{L}^+(v) \in \text{End}(C^N) \otimes U_{q,p}(\mathfrak{sl}_N)\) as follows.

\[
\hat{L}^+(u) = \left(\begin{array}{cccc}
1 & F_{1,2}^+(u) & \cdots & F_{1,N}^+(u) \\
0 & 1 & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & 1 & F_{N-1,N}^+(u) \\
0 & \cdots & \cdots & 0
\end{array} \right)
\left(\begin{array}{cccc}
K_1^+(u) & 0 & \cdots & 0 \\
0 & K_2^+(u) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & K_N^+(u)
\end{array} \right)
\times
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
E_{2,1}^+(u) & 1 & \ddots & \vdots \\
E_{3,2}^+(u) & \ddots & \ddots & \vdots \\
\vdots & \ddots & 1 & 0 \\
E_{N,1}^+(u) & E_{N,2}^+(u) & \cdots & E_{N,N-1}^+(u)
\end{array} \right).
\]

Then by a direct comparison with the relations of the half currents, we conjecture the following statement.

Conjecture 2.3 The L-operator \(\hat{L}^+(v)\) satisfies the following RLL = LLR* relation.

\[
R^{(12)}(v_1 - v_2, P + h)\hat{L}^{(+1)}(v_1)\hat{L}^{(+2)}(v_2) = \hat{L}^{(+2)}(v_2)\hat{L}^{(+1)}(v_1)R^{(12)}(v_1 - v_2, P).
\]

Here the \(R\)-matrix \(R^+(v, P)\) is the image of the universal \(R\)-matrix \(R(r, \{s_j\})\) of \(B_{q,\lambda}(\mathfrak{sl}_N)\) in the evaluation representation \((\pi_{V,z} \otimes \pi_{V,1}), V \cong C^N\), given by

\[
R^+(v, s) = \rho^+(v)\tilde{R}(v, s),
\]

\[
\tilde{R}(v, s) = \sum_{j=1}^N E_{jj} \otimes E_{jj} + \sum_{1 \leq j < l \leq N} (b(v, s_{jj})E_{jj} \otimes E_{ll} + \tilde{b}(v)E_{ll} \otimes E_{jj})
\]

\[
+ \sum_{1 \leq j < l \leq N} (c(v, s_{jj})E_{jl} \otimes E_{lj} + \tilde{c}(v, s_{jj})E_{lj} \otimes E_{jl}),
\]

\[(254)\]
where \(s_{j,l} = \sum_{m=j}^{l-1} s_j \) (1 \(\square \) j \(\square \) l \(\square \) N) and

\[
 b(u, s) = \frac{(s+1)(s-1)}{s^2|u+1|}, \quad \bar{b}(u) = \frac{[u]}{[u+1]},
\]
\[
 c(u, s) = \frac{[1]}{s|u+1|}, \quad \bar{c}(u, s) = \frac{[1]}{s|u+1|}.
\]

(2.58)

(2.59)

And \(R^{+*}(v, s) = R^+(v, s)|_{r \rightarrow r^*} \). Up to a gauge transformation, \(R^+(v, P) \) coincides with the Boltzmann weight of the \(\mathfrak{s}_N \) RSOS model introduced in [6].

The \(c = 1 \) case, the statement was proved by using the free field realization [3].

Now let us define the modified \(L \)-operator \(L^+(v, P) \) by

\[
 L + (v, P) = \hat{L} + (v) \begin{pmatrix} e^{-Q_{\varepsilon_1}} & 0 & \ldots & 0 \\ 0 & e^{-Q_{\varepsilon_2}} & \vdots \\ \vdots & \ddots & \ldots & 0 \\ 0 & \ldots & 0 & e^{-Q_{\varepsilon_N}} \end{pmatrix} = \hat{L}^+(v) \exp \left\{ \sum_{m=1}^{N} h_{\varepsilon_m}^{(1)} Q_{\varepsilon_m} \right\}. \quad (2.60)
\]

Here \(h_{\varepsilon_j}^{(1)} = h_{\varepsilon_j} \otimes 1, \) \(h_{\varepsilon_m} \equiv -E_{mm} \) (a \(N \times N \) matrix unit). We then show that the modified \(L \)-operator depends on neither \(Q_{\varepsilon_j} \) nor \(\eta_j \) and satisfies the dynamical RLL relation of \(\mathcal{B}_{q,\lambda}(\mathfrak{s}_N)[4] \).

Corollary 2.4

\[
 R^{+(12)}(v, P + h)L^{+(1)}(v_1, P)L^{+(2)}(v_2, P + h^{(1)}) = L^{+(2)}(v_2, P)L^{+(1)}(v_1, P + h^{(2)})R^{+(12)}(v, P),
\]

(2.61)

where \(v = v_1 - v_2 \).

Hence, we regard the elliptic currents \(E_j(v), \) \(F_j(v) \) (1 \(\square \) j \(\square \) N - 1) and \(K_j(v) \) (1 \(\square \) j \(\square \) N) in \(U_{q,p}(\mathfrak{s}_N) \) as the Drinfeld realization of the elliptic algebra \(\mathcal{B}_{q,\lambda}(\mathfrak{s}_N) \) tensored by the Heisenberg algebra.

\[
 U_{q,p}(\mathfrak{s}_N) = \mathcal{B}_{q,\lambda}(\mathfrak{s}_N) \otimes_{\mathbb{C}} \mathbb{C}\{\hat{H}\}. \quad (2.62)
\]

3 Vertex Operators of \(U_{q,p}(\mathfrak{s}_N) \)

We here summarize a construction of the type II vertex operator of \(U_{q,p}(\mathfrak{s}_N) \) and its dual vertex operator.
3.1 Definition

Let us first define an extension of the $U_q(\hat{\mathfrak{sl}}_N)(\cong B_{q,\lambda}(\hat{\mathfrak{sl}}_N))$ modules by

$$\hat{\mathcal{F}} = \bigoplus_{\mu_1, \ldots, \mu_N \in \mathbb{Z}} \mathcal{F} \otimes e^{\mu_1 Q_{\mu_1} + \cdots + \mu_N Q_{\mu_N}}.$$

Let $\Psi^*_W(z, P)$ be the type II intertwining operator of $B_{q,\lambda}(\hat{\mathfrak{sl}}_N)$ [4]. We define the type II vertex operator $\hat{\Psi}^*_W(z)$ of $U_{q,p}(\hat{\mathfrak{sl}}_N)$ as the following extension.

$$\hat{\Psi}^*_W(z) = \Psi^*_W(z, P) \exp \left\{ N \sum_{j=1}^{N} h_{\epsilon_j} Q_{\epsilon_j} \right\} : W_z \otimes \hat{\mathcal{F}} \rightarrow \hat{\mathcal{F}}'.$$ (3.1)

From the intertwining relation of the $B_{q,\lambda}(\hat{\mathfrak{sl}}_N)$ intertwining operators, we derive the following relation for the new operator $\hat{\Psi}^*_W(z)$.

$$\hat{L}^{(1)}_{v_1}(z_1) \hat{\Psi}^*_W(z_2) = \hat{\Psi}^*_W(z_2) \hat{L}^{(1)}_{v_1}(z_1) R_{WW}^+(v_1 - v_2, P - h_1 - h_2).$$ (3.2)

Let us consider the vector representation V of $B_{q,\lambda}(\hat{\mathfrak{sl}}_N)$. We denote a basis of V by $\{v_m\}_{m=1}^{N}$. In this representation, the R-matrix $R_{WW}^+(v, P)$ is given by $R^+(v, P)$ in (2.56) and the L-operator $\hat{L}^+(z)$ by $\hat{L}^+(z)$ in (2.54). We define the components of the vertex operators by

$$\hat{\Psi}^*_V(q^{-c-1}z)(v_m \otimes \cdot) = \Psi^*_m(z),$$ (3.3)

and the matrix elements of the L-operator $\hat{L}^+(z)$ by

$$\hat{L}^+(z)v_j = \sum_{1 \leq m \leq N} v_m \hat{L}^+(z)_{mj}.$$ (3.4)

3.2 Free field realizations

We here construct a free field realization of the vertex operators fixing $c = 1$. Let α_j be the simple root operator. We make the standard central extension $[\alpha_j, \alpha_k] = \pi i A_{jk}$ and set $\hat{\alpha}_j = \alpha_j + \check{\alpha}_j$, where $\check{\alpha}_j$ is an element of the Heisenberg algebra $\mathbb{C}\{\hat{H}\}$. Then we have

Proposition 3.1 The currents $E_j(v)$ and $F_j(v)$ given by

$$E_j(v) = : \exp \left(- \sum_{m \neq 0} \frac{[rm]_q}{[m^2]_q} (-B_m^j + B_{m+1}^j)(q^{N-j}z)^{-m} \right) : \equiv \hat{\alpha}_j^{\hat{z}} \hat{H}_{j+1}^v (q^{-j}z)^{-\frac{r_{j+1}}{r}},$$ (3.5)

$$F_j(v) = : \exp \left(\sum_{m \neq 0} \frac{1}{m} (-B_m^j + B_{m+1}^j)(q^{N-j}z)^{-m} \right) : \equiv \hat{\alpha}_j \hat{H}_{j}^v (q^{-j}z)^{-\frac{r_j}{r+1}} + \hat{H}_{j}^v,$$ (3.6)

together with $H_j(v), K_j(v)$ given in (2.40)-(2.41) satisfy the commutation relations in Definition 2.1 for level $c = 1$.

10
Now using this free field realization in (2.48)–(2.50), we obtain a realization of the half currents $E_j^+(v)$, $F_j^+(v)$, $K_j^+(v)$ as well as the L-operator $\hat{L}^+(v)$ for $c = 1$. Using the resultant L-operator in the “intertwining relation” (3.2), one can solve it for the II vertex operator.

Theorem 3.2 The highest components of the type II vertex operator $\Psi_{N}^*(z)$ is realized in terms of a free field by

$$
\Psi_{N}^*(z) = \exp \left(\sum_{m \neq 0} \frac{[rm]}{m[r^*m]} B^N_{m^2 - m} \right) e^{-\tilde{\Lambda}_{N-1} z - h_{iN} \frac{1}{2} \rho_{iN} \frac{1}{z} \frac{\pi}{\rho_{iN}} \frac{N-1}{2} q^{-\frac{N-1}{2}}},
$$

(3.7)

where

$$
\tilde{\Lambda}_{N-1} = \frac{1}{N} (\tilde{\alpha}_1 + 2\tilde{\alpha}_2 + \cdots + (N-1)\tilde{\alpha}_{N-1}).
$$

(3.8)

The other components of the type II vertex $\Psi^*_j(z)$ ($j = 1, \cdots, N$) are given by

$$
\Psi^*_j(z) = a^*_{j,N} \int_{C^*} \prod_{m=j}^{N-1} \frac{dz_m}{2\pi i z_m} \Psi^*_N(v_N) \cdots \Psi^*_1(v_1) \Psi^*_j(v_j) \times \prod_{m=j}^{N-1} \frac{[v_{m+1} - v_m - \frac{1}{2}]_1^*}{[v_{m+1} - v_m + \frac{1}{2}]_1^*} \frac{[P_{j,m+1} - 1]}{[P_{j,m+1} - 1]_1^*}
$$

$$
= a^*_{j,N} \int_{C^*} \prod_{m=j}^{N-1} \frac{dz_m}{2\pi i z_m} \Psi^*_N(v_N) \cdots \Psi^*_1(v_1) \Psi^*_j(v_j) \times \prod_{m=j}^{N-1} \frac{[v_{m+1} - v_m - \frac{1}{2}]_1^*}{[v_{m+1} - v_m + \frac{1}{2}]_1^*} \frac{[P_{j,m+1} - 1]}{[P_{j,m+1} - 1]_1^*}.
$$

(3.9)

The integration contour C^* is specified as follows.

$$
|p^* q^{-1} z_{m+1}|, |q^{-1} z_{m+1}| < |z_m| < |q z_{m+1}|, |p^* q^{-1} z_{m+1}| (j \neq m \neq N-1).
$$

(3.10)

Here the integration variable $z_m (j \neq m \neq N-1)$ should encircle the poles $p^* q^{-1} z_{m+1}, q^{-1} z_{m+1}$ but not the poles $p^{-1} q^{-1} z_{m+1}, q^{-1} z_{m+1}$.

We also have

Theorem 3.3 The free field realizations of the type-II vertex operator $\Psi^*_j(z)$ satisfies the following commutation relation.

$$
\Psi^*_{j_1}(z_1) \Psi^*_{j_2}(z_2) = \sum_{j_1', j_2'}^N \Psi^*_{j_2'}(z_2) \Psi^*_{j_1'}(z_1) R^{j_1 j_2}_{j_1' j_2'}(v_1 - v_2, P)
$$

(3.11)

Here we set $R^*(v, P) = \mu^*(v) \hat{R}^*(v, P)$ with

$$
\mu^*(v) = z^{(\frac{1}{2} + 1) \frac{N-1}{2}} \frac{p q^{2N-2} z}{p^{2}} \{q^{2N} z \}^* \{q^2 z \}^* \{p \}^* \{q^2 \}^* \{q^{2N} \}^* \{p q^{2N-2} \}^* \{q^2 \}^*.
$$

(3.12)
The dual of the type II vertex operator is an operator satisfying

$$\Psi(z) : \mathcal{F} \rightarrow V_z \otimes \mathcal{F}'$$

We define its components by

$$\Psi(z) = \sum_{j=1}^{N} v_j \otimes \Psi_j(z).$$

The following inversion relations hold.

$$\sum_{j=1}^{N} \Psi_j(z) \Psi_j'(z') = \frac{g_N'}{1 - q^{-N} z'}, \quad \sum_{j=1}^{N} \Psi_j(z) \Psi_j'(z') = \frac{g_N'}{1 - q^{-N} z'},$$

where

$$g_N' = (-1)^{N-1} \frac{r(1-N)}{q^{2(N-1)}} \left(\frac{p^*; p^* q^{2N} q^{-2}; q^{2N} q^{-2}}{q^N q^{-N} q^{2N} q^{-2}} \right)_{\infty}$$

as \(z' \rightarrow qz^{-N} \), as well as

$$\Psi_j(z) \Psi_k(z') = \delta_{j,k} \frac{g_N}{1 - q^{-N} z'},$$

$$g_N = (-1)^{N-1} q^{-r(1-N) N} \left(\frac{p^*; p^* q^{2N} q^{-2}; q^{2N} q^{-2}}{p^*; p^* q^{2N} q^{-2}; q^{2N} q^{-2}} \right)_{\infty}$$

as \(z' \rightarrow qz^{N} \). The free field realization is given as follows.

$$\Psi_j(z) = \oint_{C} \prod_{m=1}^{j-1} \frac{dz_m}{2\pi i z_m} \Psi_1(z) E_1(v_1) \cdots E_{j-1}(v_{j-1})$$

$$\times \prod_{m=1}^{j-1} \frac{[v_{m-1} - v_m - P_{m-1,j} + \frac{1}{2}]^*[1]^*}{[v_{m-1} - v_m - \frac{1}{2}]^*[P_{m-1,j} - 1]^*}$$

$$= \oint_{C} \prod_{m=1}^{j-1} \frac{dz_m}{2\pi i z_m} E_{j-1}(v_{j-1}) \cdots E_1(v_1) \Psi_1(v)$$

$$\times \prod_{m=1}^{j-1} \frac{[v_{m-1} - v_m - P_{m-1,j} + \frac{1}{2}]^*[1]^*}{[v_{m-1} - v_m + \frac{1}{2}]^*[P_{m-1,j} - 1]^*}$$

$$\Psi_1(z) = \exp \left(-\sum_{m \neq 0} \frac{r_m}{m [r^* m]} B_m(q^N z)^{-m} \right) : e^{A_1 z h_1} e^{-Q_{11} (q^N z)^{-1} P_{11} + \frac{N-1}{2N-1} \frac{N-1}{2N-1} z^{N-1}} \right)$$

where \(v = v_0 \) and the integration contour \(C \) is specified by the condition: the poles \(z_m = q^{-1} z_{m-1} p_m^* \) (\(n = 0, 1, 2, \ldots \)) are inside and \(z_m = q^2 z_{m-1} p_m \) (\(n = 0, 1, 2, \ldots \)) are outside for \(1 \leq m \leq j - 1 \).

Remark: The free field realizations of the vertex operators in Theorem 3.2 and of the dual vertex operators are essentially the same as those of the \(\widehat{sl}_N \) RSOS model obtained in [15].
4 Fusion of the Vertex Operators

We now consider the fusion of the type II vertex operator $\Psi^*_1(z_2)$ and its dual $\Psi_1(z_1)$. Namely, we consider a product $\Psi_1(z_1)\Psi^*_1(z_2)$ and investigate the limits to the fusion points $z_1 = q^{-N}p_n^m z_2$ ($n = 0, 1, 2, \ldots, N$), where the contour in (3.9) for w_1 gets pinches.

For example, let us consider the case $n = 1$. If we take residues for the poles $w_{N-1} = q^{-1}z_2$, $w_{j-1} = q^{-1} w_j$ ($j = N - 1, N - 2, \ldots, 3$), the limit $z_1 \rightarrow q^{-N} p^* z_2$ causes pinches in the contour for w_1 at two points $w_1 = q^{-(N-1)z_2}$, $q^{-(N-1)p^*z_2}$. Similarly, for $1 \not\subseteq l \not\subseteq N - 2$, if we take residues at the poles $w_{N-1} = q^{-1}z_2$, $w_{j-1} = q^{-1} w_j$ ($j = N - l, N - 1, \ldots, N - l + 1$), $w_{N-l} = q^{-1}p^*w_{N-l+1}$, $w_{j-1} = q^{-1} w_j$ ($j = N - l - 1, N - l - 1, \ldots, 3$), the same limit $z_1 \rightarrow q^{-N} p^* z_2$ causes a pinch in the contour for w_1 at a point $w_1 = q^{-(N-1)p^*z_2}$. Hence in the limit $z_1 \rightarrow q^{-N} p^* z_2$, we obtain totally N terms of contributions from the residues at the N pinching points. Similar consideration leads us to the following results. As $z_1 \rightarrow q^{-N} p^* z_2$,

$$
\Psi_1(z_1)\Psi^*_1(z_2) = \frac{1}{1 - q^{-N}p_n^m z_2} \left\{ C_n \tilde{T}_n(q^{(n-1)r^*}_z)
+ \sum'_{1 \not\subseteq j_1, j_2, \ldots, j_n \not\subseteq N} C_{j_1, j_2, \ldots, j_n} : \Lambda_{j_1}(z_2q^{(n-1)r^*}) \Lambda_{j_2}(z_2q^{(n-3)r^*}) \cdots \Lambda_{j_n}(z_2q^{r^*}) : \right\}.
$$

Here

$$
\tilde{T}_n(z) = \sum_{1 \not\subseteq j_1, j_2, \ldots, j_n \not\subseteq N} : \Lambda_{j_1}(z_2q^{(n-1)r^*}) \Lambda_{j_2}(z_2q^{(n-3)r^*}) \cdots \Lambda_{j_n}(z_2q^{-(n-1)r^*}) :, \quad (4.1)
$$

$$
\Lambda_j(z) = : \exp \left(\sum_{m \neq 0} \frac{q^{rm} - q^{-rm}}{m} B_m^j z^{-m} \right) : q^{-2P_{ij}p^{s_{ij}}q^{2(1-N)/p^*-1}j}, \quad (4.2)
$$

$$
C_n = z_1^{-N} \sqrt{\Gamma^N q^{N+1} \frac{N^2 - 1}{2}} \left(\frac{p^*; q^2; \infty}{(p^*; \infty) N \left(1 - q^{-N} \right)^n} \right) \times \left(\frac{pq^{2N} p^{s-n}; q^{2N}, p^*; \infty}{(q^{2N} p^{s-n}; q^{2N}, p^*; \infty) (q^{2N} p^{s-n}; q^{2N}, p^*; \infty)} \right) ^{N}.
$$

Here \sum' denotes the sum over the complementary set to $1 \not\subseteq j_1 < j_2 < \ldots < j_n \not\subseteq N$. $C_{j_1, j_2, \ldots, j_n}$ are constants not important here.

The basic operators $\Lambda_j(z)$ ($j = 1, 2, \ldots, N - 1$) coincides with those in the deformed W_N algebra[7, 8]. The expressions for \tilde{T}_n ($1 \not\subseteq n \not\subseteq N$) are almost same as those of the generating “currents” of the deformed W_N algebra, but the unit of the q-shift in the arguments in $\Lambda_j(z)$ is different. In an identification of the parameters $p_W = q^{-2}$, $q_W = p = q^{2r}$, where p_W and q_W are p and q in [7, 8], respectively, the unit of the q-shift in [7, 8] is given by p_W, whereas it is
\[p^* = q^{2(r-1)} \] in our \(\tilde{T}_n(z) \). As a consequence, we have

\[
\tilde{T}_N(z) = \Lambda_1(z_2q^{(N-1)r^*})\Lambda_2(z_2q^{(N-3)r^*}) \cdots \Lambda_N(z_2q^{-(N-1)r^*}) \neq 1. \tag{4.4}
\]

Therefore, our deformed \(W \) algebra generated by \(\tilde{T}_n(1 \square n \square N) \) is \(\mathfrak{g}_N \) type instead of \(\mathfrak{sl}_N \) type.

On the other hand, since the type II vertex operator \(\Psi^*(z) \) and its dual \(\Psi(z) \) are the creation operators of the physical excited particle and anti-particle, it is natural to identify the operators \(\tilde{T}_n(z) (1 \square n \square N) \) with the creation operator of their bound states. The \(S \)-matrix of the bound state particles are calculated as follows.

\[
\tilde{T}_n(z)\tilde{T}_m(w) = S_{n,m}(w/z) \tilde{T}_m(w)\tilde{T}_n(z), \tag{4.5}
\]

\[
S_{n,m}(z) = \prod_{k=1}^{n} \prod_{l=1}^{m} \varphi_N \left(zq^{-r^*(n-m+2(l-k))} \right), \tag{4.6}
\]

\[
\varphi_N(z) = \frac{\Theta_{q^{2N}}(q^2z)\Theta_{q^{2N}}(p^z\Theta_{q^{2N}}(p^{r-1}q^{-2}z))}{\Theta_{q^{2N}}(q^{-2}z)\Theta_{q^{2N}}(p^{r-1}z)\Theta_{q^{2N}}(p^{r}q^{2}z)}. \tag{4.7}
\]

Again, this \(S \)-matrix is different from the one obtained by Feigin and Frenkel (sec.7.2 in [7]) only by the choice of the unit of the \(q \)-shift.

The scaling limit of the \(\mathfrak{sl}_N \) RSOS model is expected to be the RSOS restriction of the affine Toda field theory with imaginary coupling constant. It is interesting to compare the scaling limit of our \(S \)-matrices \(R^*(v,P) \) for the excited particle and \(S_{n,m}(z) \) for the bound states with the bootstrap results [16, 17].

Acknowledgements The authors would like to thank Patrick Dorey, Tetsuji Miwa and Robert Weston for discussion. This work is supported by the JSPS/Royal Society fellowship and Grant-in-Aid for Scientific Research (C) (15540033) and Grant-in-Aid for Young Scientist (B) (14740107) from the Ministry of Education, Japan.

References

