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Abstract

The g-oscillator representation for the Borel subalgebra of the affine symmetry
U, (S/ZT\/) is presented. By means of this g-oscillator representation, we give the
free field realizations of Baxter’s Q-operator Q; (1), 6; n,(G=12,...,N)
for the W-algebra Wy. We give functional relations of the 7-Q operators,
including the higher-rank generalization of Baxter’s 7—Q relation.

PACS number: 43.25.
Mathematics Subject Classification: 81U15, 81R10

1. Introduction

Baxter’s 7-Q operators have various exceptional properties, and play an important role in
many aspects of the theory of integrable systems. Originally the Q-operator was introduced
by Baxter [1], in terms of some special transfer matrix of the eight-vertex model. Over the
last three decades, this method of the Q-operator has been developed in many literatures.
We would like to refer to some of these literatures, written by Baxter [2-5], Takhtadzhan
and Faddeev [6], Fabricius and McCoy [7-9], Fabricius [10], Bazhanov and Mangazeev
[11], Feigin et al [12], and Kojima and Shiraishi [13]. However a full theory of the Q-
operator for the eight-vertex model is not yet developed. For the simpler models associated
with the quantum group U,(g), there have been many papers which extend, generalize,
and comment on the 7-Q relation. We would like to refer to some of these literatures,
including Sklyanin’s separation variable method, written by Sklyanin [14-16], Kuzunetsov
et al [17], Pasquier and Gaudin [18], Derkachov [19], Derkachov et al [20-22], Derkachov and
Mansahov [23], Belisty et al [24], Korff [25, 26], Bytsko and Teschner [27], Bazhanov et al
[28-31, 34], Rossi and Weston [32], Dorey and Tateo [33], Kulish and Zeitlin [35], Antonov
and Feigin [36], Krichever et al [38], Bazhanov and Reshetikhin [39], Kuniba et al [40],
Boos et al [41, 42], and Chervov and Falqui [43]. Each paper added to our understanding
of the great Baxter’s original paper [1]. Especially, for example, the 7-Q operators acting
on the Fock space of the Virasoro algebra Vir were introduced by Bazhanov, Lukyanov and
Zamolodchikov [28-30]. They derived various functional relations of the 7-Q operators and
gave the asymptotic behaviour of the eigenvalue of the 7-Q operators. Dorey and Tateo
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[33] revealed the hidden connection between the vacuum expectation value of the Q-operator
and the spectral determinant for Schrodinger equation. Bazhanov et al [34] achieved the
Ws-algebraic generalization of [28, 29, 30, 31, 33]. In this paper we study the higher-rank
Wy-generalization of [34]. We study the 7—Q operators acting on the Fock space of the
W-algebra Wy . We give the free field realization of the Q-operator and functional relations of
the 7-Q operators for the W-algebra Wy, including the higher-rank generalization of Baxter’s
T-Q relation,
N-1
Qi(tg") + D (1) Ty s, (g7 HQi(tg" ) + (= DN Qi (tg ™) = 0,

s=1

N-1

Qi(tg™™) + Y (=)' Ta 1, (t)Q; (b V) + (= DV Qi (2g") = 0,

s=1

where i = 1,2, ..., N. The organization of this paper is as follows. In section 2, we give
basic definitions, including g-oscillator representation of the Borel subalgebra of the affine
symmetry Uy (.57]\\/), which plays an essential role in the construction of the Q-operator. In
section 3, we give the definitions of the 7- and Q-operators. In section 4, we give conjecturous
functional relations between the 7- and Q-operators, including Baxter’s 7-Q relation. In the
appendix, we give supporting arguments on conjecturous formulae stated in section 4.

2. Basic definition

In this section, we give the different realizations of the Borel subalgebra of the affine quantum
algebra Uq’ (s/lj\v), which will play an important role in the construction of Baxter’s 7-Q
operators. Let us fix the integer N 2 3 and a complex number 1 < r < N. In this paper, upon
this setting, we construct Baxter’s 7-Q operators on the space of the W-algebra Wy with the
central charge —oo < Ccpr < —2, where

Carr=(N—-D[1 NN +1)
en=0v=0 (1555

Because Ccpr — —o0 represents the classical limit, we call —oo < Ccpr < —2 ‘quasi-
classical domain’. By analytic continuation, it is possible to extend our theory to the CFT with

central charge Ccrr < 1. We would like to note that the unitary minimal CFT is described by

the central charge Cerr = (N — 1)(1 — 20E0) for N, r € Z, (N 2 2,r 2 N +2) [44]. We
. In what follows we use the g-integer [n];, = q;__::l” .

L
2mit-
m

set parameters r* =r —landg = e

2.1. The g-oscillator representation

Let {€;} be an orthonormal basis of RY, relative to the standard inner product (€;le;) = §; ;.
Let us set &; = €; — €, where € = + Zyzl €;. We have ([¢;) = &;; — +. Let us set

D a;. Let us set the

the simple roots o; = €; — €41, (1 = j S N —1)and ay = —Z]
fundamental weights w; as the dual vector of «;, i.e. (o;|w;) = & ;. Explicitly we have
w; = € +---+¢€;. Let us set the weight lattice P = @?/:1251% We consider the quantum
affine algebra U(;(s/l;), which is generated by ey, ..., en, f1,..., fn, and hy, ..., hy, with
the defining relations,

hi _ ,—hi
[hioh1 =0, [hi el = (@ilees,  [hi, fi]= —(aile) f, [ei,fj]=5i,j%,

ele; — 2 eiejei +ejef =0,  frfi =21, fififi+ fiff =0, for (oiler;) = —1.
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Here ((oj|o)) < k< n 1 the Cartan matrix of type sly. Letus introduce the Borel subalgebra
of U(;(s/l,\v). The Borel subalgebra U;(E*) is generatedby ey, ..., ey, hy, ..., Ay, and U; (B‘)
by fi,..., fn,h1,..., hy. In this paper we consider the level ¢ = 0 case, with the central
element ¢ = h; +--- + hy. Let us introduce the g-oscillator representation o, of the Borel
subalgebra U é (ﬁ*). The g-oscillator algebra Osc;, (1 < j < N — 1), is generated by elements
£, E_;‘, 'H j, with the defining relations,

1

(M, &1 =€, [H;,E1= €], q&;& —q & = PR 2.1)
Let us set Osc = Osc| Q¢ - - ®c Oscy—1. We have [€;, E] = 0,[€7, &1 =0,[&;, &1 =
0, [H;, Hk]l = O for j # k. Letus set the auxiliary operator Hy = —H; —Hp — - -+ — Hy—1.
We define homomorphism o, : U, (b*) — Osc by

orer) = 1q(q —q g EE,

o) = q2(q —q g "0 L8,

orlen—2) =% (g — g~ g T EY N, 2.2)

o/(eny-1) = g;t/,p
o(en) = q Ve,

o/(h1) = —Hi1+Hz, o0;,(hy)) =—Ha+Hs,...,0/(hy) = —Hy+Hi.

This g-oscillator representation o, satisfies the level zero condition o;(h| +hy+---+hy) = 0.
This g-oscillator representation gives a higher-rank generalization of those in [34]. By means of
the Dynkin diagram automorphism z, o, we construct a family of the g-oscillator representation
01,j, 0y,j- Let us set the Dynkin diagram automorphism 7 of the affine algebra U, (sly),

t(e)) =ez,...,T(e;) =¢€j41, ..., T(en) = ey,

T(hy) =ha,...,t(hj)) =hj, ..., t(hy) = hy,

(f) = fo,....t(f) = fisr, ..., T(fn) = fi.
Let us set the Dynkin diagram automorphism o of the finite simple algebra U, (s/y), generated
byez,...,eN,hz,...,hN,fg,...,fN.

o(e) =en,...,0(e;) =ensa—j,...,0(en) = e2,

o(hy) =hy,...,o0(hj) =hysyj,...,0(hy) = ha,

o(f2) = fn,...0(f}) = fneo—j, - 0(fN) = fo,

and o is extended to the affine vertex as o(e;) = ej,0(hy) = hy,o(f1) = fi. We have the

actionof 7/ - o - 771,

ot e) =eji,
ot () = hj_iw,
oot () = fimie
with s, j € Z. We set homomorphism o, ;, 0;,; : U;(B*) — Osc, (1 £ j<N),
0 j =07, o) =0y T ot (2.3)

These g-oscillator representations oy ;, 0;,; will play an important role in the construction of
Baxter’s Q-operator.
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2.2. Evaluation highest weight representation

Let us consider the quantum simple algebra U, (gly), which is generated by E, ..., Eq,_,,
Hy,...,Hy,and F,,, ..., Fy, ,, with the defining relations,
[Hi, H;] =0, [Hi, Eo,] = (8i,j — 8i,j+1) Ea,, [Hi. Fu,] = (=8i; +8i je1) Fa,,
H,-*H,-.H *Hi+Hi+l
q —q
[Ea,-v Fot,-] = (Si,j q— q71 s
E. Eo, — [214Eq Eo Eq, + Eo, E; =0, F, Fo, — [2)gFo, Fu, Fo, + Fo, F = 0.
Let us set the root vectors,
1

Fa|+a2 = [Faz’ Fal]ﬁ = \/aFasz - ﬁFﬂtlFaz’

_ 1

Fa1+az = [Fllg’ Fal] = _FazFal - \/EF(X]FLXQ’

R
Fuverany = [Fan o [Fayar - [Fas Fen ] -] 5]

Foprrany = [[ -+ [Fanss FaH]ﬁ s Faz]ﬁ, Fal]ﬁ.
Let us set the automorphism o by
0(Ey)=Eqy ,s..-, a(Eo,j) = Euy_;» ...,a(EaN_l) =E,,
o(H))=—Hy,...,0(Hj) =—Hy_js1,...,0(Hy) = —Hj,
0(Fu) = Faprs -+ 0(Fa;) = Fay_s -, 0 (Fay_,) = Fu,.
We have the evaluation representation ev,, ev,: U, ; (s/l-l\v) — U, (gln), given by
evi(er) = Eqys ... evi(ejry) = Ey;, .., evi(ey) = Eqy
evi(hy) =H — Hy,...,evi(hj1) = Hj — Hjy1, ..., ev,(hy) = Hy_; — Hy,
ev,(f2) = Foys oo s ev (fix1) = Foys ooy o0 (fy) = Foyy
evi(€e1) = 1 Fopsarsosay 4", v (f1) =t Eqpraptoray g ",
ev,(hy) = Hy — H;.
evi(er) = Eal» ceey ﬁt(ejﬂ) = Ea_,-’ ..., ev(ey) = EaN,I ,
evi(hy)) = Hy— H,,...,ev;(hjy) = H;j — Hj,y,...,ev;(hy) = Hy_1 — Hy,
ev (f2) = Foy, ..., €0 (fj1) = Foys oo, €0 (fN) = Fuy s

—H,—Hy H\+Hy
5 5

— - — 1=
evi(e1) = tFo vanttay_1q ev (f1) =t Eqvapttay 4

ev;(h)) = Hy — H;.

We have the conjugation ev, = o - ev(_yn, - o~!. We set the irreducible highest representation
of U, (gly) with the highest weight A = m A + --- + my Ay, the highest weight vector [A)
of Uy (sly):

M (Eq))I1) =0, r M (H)IL) = mj|A), (1Sj<N).

In what follows we consider the case m; —mj, € N, (1 < j £ N — 2). In this case the

representation 7 ® is finite dimension. Let us set the evaluation highest weight representation
(A) N

;" of the affine symmetry U, (sly) as

7® = g® 73 = g ®

- evy, - ev;.

These evaluation highest weight representation will play an important role in the construction
of the T-operator T, (¢), T, (¢).

4
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2.3. Screening current

Let us introduce bosons B, (m € Zo;i =1,2,...,N — 1), by

. . —1
[BL, Bi] = mByamoleilo)) ——, 1<i,jEN-1). 2.4)
r

Let us set BY = —Y " Bj,. We have the commutation relation [Bi,Bi] =
m8m+,,,0(a,-|oej)’r;1, for 1 < i,j £ N. Let us set the zero-mode operators P; and

Q)L, ()L e P= ®jZ€j) by
[P, 1Qu] = (Al). (2.5)

Let us set the Heisenberg algebra B generated by B),...,BY 1P, Q,, (A € P) and its
completion B. Let us set the Fock space F; ; by

B/|l,k) =0, (m > 0) (2.6)

Pa|l,k)=<a [ 1—,/r_1k>|z,k>, 2.7)
r—1 r

1 k) = eV 2V g 0y 2.8)

Let us set the screening currents of the W-algebra Wy by

: r rr : 1 J imu
Vo (u) = exp | i/ — Qq; | €xp — Py;iu | exp Z —B!,e
r r m

m=>0

|

X exp (- Z —B,{qe_lm”> , (1<j<N). (2.9)
m>0 m

Here we have added one operator V, (1), which looks like affinization of the classical Ay_;.

We can find the elliptic deformation of V,, (u) for j # N in [12, 13]. For Re(u;) > Re(u»),

we have

Vi, (1) Vi, () =1 Vi, (1) Vi, () ¢ (€7 — &), (1<j<N),
Vi, 1) Vi, (u2) =t Ve, (1) Ve, (2) = ("1 — &2) 77, (1<j<N),
Vi 1) Vi, u2) =t Vi, (1) Vi, (u2) : (€M1 — €)™ 7 (1Lj<N).
By analytic continuation, we have
Ve 1) Vi, (2) = @17 Vi, (12) Vi, (1), (1<i,j<N). (2.10)
Let us set

2 =exp (—2m,/r7pgj>, (1<j<N). 2.11)

We have 7122 ---zy = 1 and

Vi, +27) = 27 2001 Vi, (), 2 Ve, () = g% 7% Ve ().
Let us set the nilpotent subalgebra Uq/(ff) generated by fi, fo,..., fv. We have
homomorphism sc : U, (0~) — B given by
1 2w
sc(fj) = —~ / Vi, () du, (I=j=N).
q9—4 0 '
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3. Baxter’s Q-operator

In this section, we define Baxter’s 7—Q operators by means of the trace of the universal R, and
present conjecturous functional relations of the 7-Q operator, which include the higher-rank
generalization of Baxter’s 7-Q relation.

3.1. L-operator
Let us set the universal L-operator £ € B® U,(m") by

] r* N 2
L=exp|—miy/ = P, ®h; | Pexp (/ K(u)du). (3.1)
r = 0

Here we have set

N
K(u) = Z Vo, () ® e;.

Jj=1

Here P exp ( fozn K(u) du) represents the path ordered exponential

2
P exp (/ K (u) du>
0

o0
= Z// Ku)K(uy)--- K,(u,)du; dusy - - - du,.
=0 21 2y 2up 2 2ty 20

The above integrals converge in ‘quasi-classical domain’ —oo < Ccpr < —2. For the value
of Ccpr outside the quasi-classical domain, the integrals should be understood as analytic
continuation. Let us set U, (s/y) the extension of U, ‘; (sly) by the degree operator d. Let us set
U, (@) the extension of U, ; (nF) by the degree operator d. There exists the unique universal
R-matrix R € U, o) ® U, (n™) satisfying the Yang—Baxter equation,
R12R13R2 = RozRi13R 2.
The universal R’s Cartan elements t is factored as
N—1
R =q'R, t=>) h@hl+c®d+d®c,
j=1
where (h'|h;) = §; ;. We call the element R € U, o) ® U, (n~) the reduced universal
R-matrix. The L-operator is an image of the reduced R-matrix [34],
L= (sc®id)(R).

The L-operator will play an important role in trace construction of the 7-Q operators.

3.2. T-operator
Let us set the T-operator T} (¢) and T, (1) by

¥ al
T;(t) = Tryo | exp [ —i 72ij®hj cl. (3.2)
iz
r* N
T, (t) = Tr- i)=Y P, @h; | L], 3.3
3 (1) 7o) | €Xp Tl r; , ®h; 3.3)
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Let us set an image of £ as L, (1) = (id ® rr,m) (£), and the R-matrix R, ;,(t1/t) =
n,(lm ® 71,92)(73). We have the so-called RLL relation,
Ry 2, (11/ 2) Ly, (1)L, (f2) = Ly, (22) Ly, (11) R 2, (11/ 12).

Multiplying the R-matrix Ry, ;,(t;/t;)~" from the right, and taking trace, we have the
commutation relation

[T, (1), T, ()] = [T, (1), T (12)] = [T, (1)), T, (1) ] = 0.
The coefficients of the Taylor expansion of T, (#) commute with each other. Hence we
have infinitely many commutative operators, which give the quantum deformation of the
conservation laws of the Nth KdV equation.

3.3. Q-operator

Let us set the Fock representation nj-i: Osc; — w* with j=1,2,...,N —1,
W* = @>Clk)s, W™ = @;20CIk)_.
The action is given by
—2k
TRk, = —klk)y,  7FENIK), = ﬁv« ~ Dy 7HEDIK) = k+ 1y,
_ _ —g* _
n; (Hplky- = klk)—, 7, (Ejlk)- = mlk -, 7w (EPlk)- =lk+1)-.

Let r; and 7 ; be any representation of the g-oscillator Osc = Osc; ®c - - - ®¢ Oscy 1 such

that the partition Z;(t), Z;(t) converge:

N
r*
Z:(t) = o —2mi, | — . ;
() =Trgy,,; | exp 2mi,f . ZP,U, ®h; ,
j=1
r* N
Z:(t) =Trz5 —2miy/— Y P, ®h;
J() r jOt.j exp 71 r ; /® J

Let us set the operators A (f) and Kj (t)ywithj=1,2,...,N

N
1 L r*

Ai(t) = mTrniow exp —m,/T ]2:1: P, ®h; | L], 3.4

. 1 ) r* N

Ait) = %Trﬁ/@j exp | —mi - JXZI: P, ®h; | L]. 3.5)

Let us set Baxter’s Q-operator Q;(¢) and 6]» (H)ywithj=1,2,...,N,

Qi) =t WVFA D, Qi) =V FA 1), (3.6)
‘We would like to note the convenient relation
N N—1
D Py ®o i) =) (P — Pe,) ® He
k=1 k=1
N N-1
prk ® oy, j(hy) = (Pé,,k—ng)(X)Hk.
k=1 k=1



J. Phys. A: Math. Theor. 41 (2008) 355206 T Kojima

Here we should understand the suffix number as modulus N, i.e. €j,y = &;.
From the Yang—Baxter equation, we have the commutation relations

[Q; (1), Q;(12)] =[Q;,(1). Q;,(12)] = [Q), (1), Q;,(12)] =0,

and

[Q; (1), T5.(22)] = [Q; (1), Ta(t2)] = [Q;(11). T (12)] = [Q; (1), T;.(12)] = 0.

The operators A () can be written as power series:

o0
A =1+ Y aj(or.....on)

n=1 01,...,0n,E€ZN

X // Va,, 1) -+ Vo, (uny) duy - - - duy,.
272U Zur > Sy 20

Here we have set
1 r* N
) _ I, P .
an, (01, ..., 0N,) = mTrnj% exp 2mi,/ . 21: Py, ®hj | eseo, ... o
j=

The coefficients “1(\;2 vanishunlessn = |{j|o; = s}| fors € Zy, and behave like al(\{,)l ~ 0@1").
The coefficients a;\f,)l are determined by the commutation relations of the Borel subalgebra
U,(n™) and the cyclic property of the trace, hence the specific choice of representation 7, 7 ;
is not significant as long as it converges. In [12, 13], we have constructed the elliptic version

of the integral of the currents,

/ o / Vot,,] (ul)vot,,z (MZ) o Vot{,N” (uNn) dul duZ e duNn-
27 2y 2ur 2 2y, 20

4. Functional relations

In the previous section, we show that the 7-Q operators commute with each other. In this
section, we give conjecturous functional relations of the 7—Q operators, which coincide with
the previous work [34] upon N = 3 specialization. We have checked those functional relations
up to the order O (#?) in the appendix. Some similar formulae have been obtained in the context
of the solvable lattice models associated with U, (s/l;;) [38—40]. At the end of this section we
summarize the conclusion.

4.1. Functional relations

The T-operator is written by the determinant of the Q-operators. Let us set the Young
diagram p = (w1, M2, ..., 1n), (0 = pj1; m; € N). Using the same character as the
Young diagram p, we represent the highest weight © = Ay +--- + uyAyxy. We set

co=[li<jazn ( ﬁ — ﬁ) We have the following determinant formulae of the T-operator:

Qi(tg*™)  Qu(tg*) - Qu(tg*™)
T = | GO QUET Q) @
Qn(g* ™) Qu(tg*) -+ Qu(1g*™)
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Q,(tg™ )y Qq(tg™%) ... Qq(tg )
M(r)— sz ) Qz(fq_z““) e QuegTy | 4.2)

€o
QN(tq—zl-L]) QN(tq—Zuz) GN(tq_ZﬂN)

Here we have used the auxiliary parameters 2ji; = 2u; + N —2j+1,(1 = j = N). We
have checked the above formulae (4.1) and (4.2) foru = Ajand u = A +---+ Ay_j,upto
the order O (¢?) (see the appendix). As the special case u; = 0, (1 < j < N), we have the
quantum Wronskian condition:

Qg™ Qutg™ ) - Qutg™h

o = Qg™ Qg™ - Qutg™V*h) , (4.3)
QN(tCIN DoQutgV ) o Qultg™V
Qitg™)  Queg™?) - Quleg™™h

o= Qz(quNH) Qz(fq7N+3) Qz(fCIN 1) (4.4)
QN(tq7N+1) QN(“]iNH) QN(th h

We have checked the above formulae (4.3) and (4.4), up to the order O (¢?) (see the appendix).
Letus set ¢; = [[izjwsn (\/g — \/;I) forl £i £ N. The two kinds of Q-operator, Q;(¢)

Jk#£i
and Q; (7), are functionally dependent. The Q-operator Q; (¢) is written by the determinant of

the Q-operator 6 i (D),

Q (th 2 Q (th Hoo Q (tq‘M)
i (th) i (tN“) s Qi ‘N+2)
0, (1) = Qi qN_2 Q. qN ) Qi q_w ’ @5)
Qi+] (g™ ™) Qz+1 (tq ) e Q1+l([q )
Qy(tg" ™) QN<qu Yo Qy (rq—M)
Qitg™™) Qg™ - QutgV )
— Qi- 1(“]7N+2) Qfl(quNM) e Qi 1(f6]N %)
Qi (1) = , 4.6
aQ) = Qir1(tg™?)  Quntg ™™ -+ Qu(tgV ™) *-0)
Qu(tg™™)  Qun(tg™™) -+ Qn(tg"™?)

with i = 1,2,..., N. We have checked the determinant formulae (4.5) and (4.6) up to
the order O(t?) (see the appendix). We derive the following (4.7)—(4.13) from the above
formulae (4.1), (4.2), (4.5) and (4.6). We have the higher-rank generalization of Baxter’s 7-Q
relation (4.7) and (4.8), as the consequence of (4.1) and (4.2),

N-1

Qi(tg™) + D (1) Ty 4, (g7 HQi(tg" ) + (=D Qi(tg ™) = 0, “.7)

s=1
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N-1

Qi(tg™™) + Y (=1 Ta 1, (t)Qi (b V) + (=Y Qi(tg") = 0, (4.8)

s=1

withi = 1,2, ..., N. This Baxter’s 7-Q relation, (4.7) and (4.8), coincides with those in [34]
upon N = 3 specialization. Note that the specialization to N = 2 does not yield the formulae
in [28-30], because the Dynkin diagram for N = 2 is different from those for N = 3. We
have to give separate definitions of the bosons, the g-oscillator and the screening currents for
N = 2,[28-30]. This Baxter’s T-Q relation (4.7), (4.8) coincides with those of [38] for N = 3.
In [38], Krichever et al gave the conjecture that the standard objects of quantum integrable
models are identified with elements of classical nonlinear integrable difference equation. For
the simplest example they showed that the fusion rules for quantum transfer matrices coincide
with the Hirota—Miwa’s bilinear difference equation [45, 46] (the discrete KP). They derived
higher-rank generalization of Baxter’s 7-Q relation by analysing the Hirota—Miwa’s bilinear
difference equation (classical nonlinear integrable difference equation) too. In this paper,
we derive the same Baxter’s 7-Q relation by analysing the quantum field theory of the KP
(quantum integrable model). Hence this paper gives a supporting argument of the conjecture
on quantum and classical discrete integrable models, by Krichever et al [38]. As aconsequence
of (4.5) and (4.6), we have the bilinear formulae of the T-operator (4.9) and (4.10):

N
(D T, () = Y (D)™ eQu (g™ N ) Q, (tg ™). 4.9)
s=1
(N-D(N=2) — N —
=D s, () = Y (=1, Qu(tg " ¥*HQs (t9), (4.10)
s=1
and
e _ - 1WA O (1,-2m=1NO (1,N—]
(=12 qTmassan o) = D_(=D"*e,Qtg ") Q, (tg" ™), (4.11)
s=1
N
DT Toa sesny 0 () = D (=D¥*e,Qu (1™ )Qy (1g ™). (4.12)

s=1

As a consequence of the determinant formulae (4.1) and (4.2), we have the Jacobi—-Trudi

formulae of the T-operator. For the Young diagram u = (w1, i1, ..., un—1,0), we have
‘L’(M/l)(l‘) . -E(/L’1+j—1)(,q2(j—l)) . T(u’1+l(u’)—l)(tqZ(l(/x/)—l))
T,@) = W=D (1) e T W=D (1g20 D) oo WD) (14201
W 1D gy U TR (2G-Dy L i) (120D
(4.13)

Here we have set ' = (i}, uh, ..., ) the transpose Young diagram of u, and I(p') = 1.
We have set ) (¢) = Ty, 4.4, (¢). We have 1@ (t) = 1™V (¢) = 1. The above conjecturous
functional relations of the T-Q operators, (4.1)—(4.13), coincide with the previous work [34]
upon N = 3 specialization.
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4.2. Conclusion

In this paper we present a g-oscillator representation of the Borel subalgebra U (; (s/l;), (2.2). By
using this g-oscillator representation, we give the free field realization of Baxter’s Q-operator
Q;(), 6; (t) with j = 1,2,..., N, for the Wy-algebra, (3.4)—(3.6). The commutativity of
the Q-operator is direct consequence of the Yang—Baxter equation. We give conjecturous
determinant formulae of the 7-Q operators for the Wy-algebra, (4.1), (4.2), (4.5), (4.6),
which produce the higher-rank Wy -generalization of Baxter’s 7-Q relation, (4.7), (4.8). We
have checked these determinant formulae of the 7-Q operators, (4.1), (4.2), (4.5), (4.6) up
to the order O (%) in the appendix. Because the scheme of functional relations works well,
we conclude that the number of the Q-operators for the Wy-algebra is just 2N, (N 2 3). In
this paper we did not give a complete proof of the determinant formulae for the Wy -algebra.
Bazhanov et al [34] gave the proof of the determinant formulae for the Ws-algebra. Their
proof is based on the trace of the universal L-operator over Verma module, and the Bernstein—
Gel’fand-Gel’fand (BGG) resolution. Because we have already established conjecturous
determinant formulae, higher-rank generalization of the complete proof seems a calculation
problem. However it is not so easy.
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Appendix. Supporting arguments

In this appendix, we give some supporting arguments on conjecturous formulae of the
determinant formulae (4.1)-(4.6). We check those determinant formulae up to the order o).

AtﬁrstwepreparetheTaylorexpans1onofA (), A;(t). Letussetm; =7; = 7/ ®- - ®7rN 1

Taking the trace for the basis {|ny, no, ..., ny_1) = (K" (H5)"™ - (Hy_ )" 100 ® -+ ®
[0)+}n, ms,....ny_ N> WE have

N —1
Zj(t) = Try, (exp( 2711\/72 P, — P.,)) ®Hk)> _ l—[ <1_§> ,
J

k=1
#J
with j = 1,2, ..., N. In the same manner as the above, we have
N 2\
Zi(t) = 1-=L) .
io=T] < Zk)
k=1
ke

Let us set a;, a; by

A1) =1 +a;t +0@?), A () =1+a;t+0@1>.
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Let us set

it Z// Vi, i) Vi, (u2) - - - Vi (un)
27 2uy 2up 2 2y 20

X Vi, (Uns1) Vip (Uns2) -+ Viy (Uan) - - -
X Vi, Un=1)+1) Vi, Un—1)42) * + * Viey, Unp) dueg duy - - - duy,.

Let us calculate coefficient of Jl >..n ina;. We have

.....

—N—I
Try, (o,,i (exp (—2ni,/ Z P, ® hk> ejeses - )) 1(2) """ v =1t(q— g HN %4 .

k=1

X 1_[ Tty (exp ( 2711,/ (Pg, g,ﬂ) ® Hk> EkS,f> X jl(lz) _____ N-

Taking the trace and dividing Z; (¢), we have

IN-2, N 2
q2 21 1
a; = - X T ¥
(g—q )]_[kzl (q%zi — )
ki
withi = 1,2, ..., N. In the same manner as the above, we have
IN_N-2
_ q2"z; 2 1
= (—)V : XT3 NHs

(@ — g DT (@22 — 20)
k#i

withi = 1,2,..., N. Let us check the determinant relations between Q; (¢) and Q (1), 4.5)
and (4.6). We have

Qitg"? Qg™ - Qutg™V)
Qi- 1(qu ) Qi- (qu_3) e Qin 1(1‘61_N+2) _ VEP (\/> \/7>
Qz+l(t51N 2) Q+1(th g) oo Qi (tg™ N+2) 1< <k<N
e
Qu(1g"™?) QN(fCIN Yoo QultgTV)

< |1+ Za, ]—[ (¢° ZJ ) v |4 o)

—z0 ?
j;él k#’ J

Inserting the formulae of a; into the RHS and using the following identity,

N N-2 N-2

Z Z] . ( I)N Zi

N b

= (zjq? _Zt)l_[k ! (Z/_Zk) [Te=1 (zg? = zi)

J#i ki
we have

IN_N=2
—J=EP 977z " 1
VP [ 14 (1) LSRR

(@ —q ) Th=1 Gxg® — )
k#i

which coincides w1th the leading terms of 6,» (¢). As the same argument as the above, the
coefficients of Jk Jo....ky coincide with each other up to the order O(t?). Now we have

12
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checked the determinant formulae (4.5) and (4.6) up to the order O(t?). For the second we
check the quantum Wronskian condition (4.3) and (4.4) up to the order O (¢?). We have Taylor
expansion of determinant of Q;(¢),

Qitg™™  Qutg" ) - Qutg™N*)
Qx(tg™ ™ Qu(tg"~ 3y o Qx(tg™ )
sz(th D) QN(th 3 - Qultg™V
z Zk B -
! a || ———¢"" |1+ 0@
- T (25 (B e

ki
Inserting the explicit formulae of a; into RHS and using the following identity,

N
Y= I G@i—z =0
i=1

1Sj<k<N
Jok#i

Zk

Now we have checked the quantum Wronskian condition (4.3) and (4.4) up to the order O (¢?).
Next we consider the determinant formulae (4.1) and (4.2) for the special cases 4 = A; and
u = A +---+ Ay_;. Because we have checked formulae (4.5) and (4.6) up to the order
0(1?), itis enough to show (4.9)—(4.12) in order to show (4.1) and (4.2) up to the order o1?).
We have

we have

1<j<k<N

N
(-1(v-2 Z(_ 1)S+leQs (th+1)6S (tqfl)

s=1

(=D

N
= > 0" ] G —wd+1@" M a +q7'a) + 0.

1Sj<kEN
J.k#s
Using the following relation,
N
s+l _N
D ] @-—w= [] @G-w@+at++,
s=1 1Sj<kEN 1Sj<kEN
Jik#s

we show that the first leading term becomes cg Z;V:l z;j. Inserting the explicit formulae of
as, a; and using the following relation,

N 2N 2 -1

Z — - =@—q,
— l_[k 1 (Zs Zk) Hk:l (zs — q°21) nk:l (zs —q~2z)
k#s k#s

we have the second leadlng term,

Nn 1 1
g > l_[ (Zk—z,-)(mjl(,; N+Z2~72(,3),...,1v,1+"')-

1<j<kEN



J. Phys. A: Math. Theor. 41 (2008) 355206 T Kojima

Now we need explicit formulae of Ty, (¢). Let us fix a basis of the irreducible highest
representation of U, (gly) with Ay by

A, wP(E) A, N (EgEd) M), 7 (Eay - Ea)| A
The matrix representation of 77 (A is written upon this basis by

7 (Ey) = @Gjidtishigjpsy. (1SiSN-—1),

A (Fy) = (85141861 k<> (1si=N-1,

7N (Hy) = (878k)1<j 45w (1=Si=N).

Using this matrix representation, we have

N 00 N
— n, M (n)
Ta, () = ZZ]‘ + Zt q° ZZ.i‘]j,j+l,j+2,..A,j+N—1'
j=1 n=1 j=1

Now we have checked the determinant formula (4.1) for & = A up to the order O(t?). As the
same manner we checked the determinant formula (4.1) for u = Ay +---+ Ay_; and (4.2)
foru = Ay, Ay +---+ An_1, up to the order O(t?). For reader’s convenience we summarize
the explicit formulae of Ty, +...kn, , (), TAI (t) and TA]+...+A v, (). The matrix representation
of r(A1+++Ax-1) is written by

g O AN (Ey ) = (8 n—ibk it 1< k<N (I1=is=N-1,
A .
g Bt (F,) = Gjv-imbiv-i<jhsy.  (ISISN-=1),
Aot Ay
Mt AND (Hy — Higy) = (8 N—ik N—i — 8j N—i+18k N—i+1) 1< j k<N »
(1<i<N-1.
We have
N 1 o0 N 1
2-4 N
Ta+sny, () = Z —+ Zl‘"q( (=M Z - j("i)zvf1.---.j+1,j’
— Zj — — < o
j=1 n=1 j=1
N %} N
— _ _nN (n)
Ty, (1) = sz + Ztnq 2 szjj,j+l,j+2,....j+N—1’
j=1 n=0 j=1
N 1 0 N 1
T Y2 (m)
Tapray (=) = P EEDD TN
=1 =l j=1"

Using these explicit formulae, we have
_x = N
Ta (g 21) =Ty, (g2 1),

Tavsay (Cl# 1) =Tatetny, (g %l),
To(t) = To(t) = 1.
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