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Abstract The deformed W -algebra is a quantum deformation of the W -
algebra Wβ(g) in conformal field theory. Using the free field construction, we
obtain a closed set of quadratic relations of the W -currents of the deformed
W -algebra. This allows us to define the deformed W -algebra by generators
and relations. In this review, we study two types of deformed W -algebra.

One is the deformed W -algebra Wx,r

(
A

(2)
2N

)
, and the other is the q-deformed

corner vertex algebra q-YL1,L2,L3
that is a generalization of the deformed

W -algebra Wx,r

(
A(M,N)(1)

)
via the quantum toroidal algebra.

1 Introduction

The deformedW -algebra Wx,r(g) is both a two-parameter deformation of the
classical W -algebra W(g) in soliton theory and a one-parameter deformation
of the W -algebra Wβ(g) in conformal field theory. The deformation theory of
theW -algebraWβ(g) has been studied in papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. In comparison with the conformal case, the deformation theory of the
W -algebra is still not fully understood. Except in low-rank cases such as the
Virasoro algebra and the W3-algebra, it isn’t easy to handle the W -algebras
Wβ(g) in a computational way [15]. In the case of the deformed W -algebra,
it is sometimes possible to perform concrete calculations relatively easily.
For instance, quadratic relations of the deformed W -algebra Wx,r(g) have

already been known in the cases of g = A
(1)
N and A

(2)
2 [1, 2, 3, 4, 7]. In the

case of Wx,r

(
A

(1)
1

)
, the basicW -current T1(z) satisfy the following quadratic

relation [1]
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g

(
z2
z1

)
T1(z1)T1(z2)− g

(
z1
z2

)
T1(z2)T1(z1) = c

(
δ

(
x−2z2
z1

)
− δ

(
x2z2
z1

))
with an appropriate constant c and a function g(z). In the case of Wx,r

(
A

(2)
2

)
,

the basic W -current T1(z) satisfy the following quadratic relation [4]

f

(
z2
z1

)
T1(z1)T1(z2)− f

(
z1
z2

)
T1(z2)T1(z1)

= δ

(
x−2z2
z1

)
T1(x

−1z2)− δ

(
x2z2
z1

)
T1(xz2) + c

(
δ

(
x−3z2
z1

)
− δ

(
x3z2
z1

))
with an appropriate constant c and a function f(z). In this review, the author
would like to report the quadratic relations in the cases of the twisted algebra

Wx,r

(
A

(2)
2N

)
[12] and the q-deformed corner vertex algebra q-YL1,L2,L3

that is a

generalization of the deformedW -algebraWx,r

(
A(M,N)(1)

)
via the quantum

toroidal algebra [8, 10, 11, 13]. These relations allow us to define the deformed
W -algebras by generators and relations.

The text is organized as follows. In Section 2, we review the quantum
toroidal algebra E associated to gl1 and the quantum algebra K. In Section 3,
we review the free field constructions of the basic W -currents T1(z) both for

Wx,r

(
A

(2)
2N

)
and q-YL1,L2,L3

. We introduce the higher W -currents Ti(z), i =
2, 3, 4, . . ., by fusion procedure. We present a closed set of quadratic relations.
Using these relations, we define the deformed W -algebras by generators and
relations.

2 Quantum toroidal algebra E associated to gl1

2.1 Notation

Throughout the text we fix three complex parameters q1, q2, q3 ∈ C× such
that q1q2q3 = 1. We assume ql1q

m
2 q

n
3 = 1 (l,m, n ∈ Z) implies l = m = n = 0.

We use the notation sc = q
1
2
c (c = 1, 2, 3), κr =

∏3
c=1(1 − qrc ) (r ∈ Z). For

any integer n, define q-integer

[n]q =
qn − q−n

q − q−1

for complex number q ̸= 0. We use symbols or infinite products

(a; p)∞ =

∞∏
k=0

(1− apk), (a1, a2, . . . , aN ; p)∞ =

N∏
i=1

(ai; p)∞



Quadratic relations of the deformed W -algebra 3

for |p| < 1 and a, a1, . . . , aN ∈ C. Define δ(z) by the formal series

δ(z) =
∑
m∈Z

zm.

2.2 Quantum toroidal algebra E associated to gl1

In this section, we review the quantum toroidal algebra E associated to gl1
in Refs. [8, 18, 19]. We set

g(z, w) =

3∏
j=1

(z − qjw), ḡ(z, w) =

3∏
j=1

(z − q−1j w).

The quantum toroidal algebra E associated to gl1 is an associative algebra
with parameters q1, q2, q3 generated by en, fn (n ∈ Z), hr (r ∈ Zr ̸=0) and
invertible central element C. We set the currents

e(z) =
∑
n∈Z

enz
−n, f(z) =

∑
n∈Z

fnz
−n, ψ±(z) = exp

(∑
r>0

κrh±rz
∓r

)
.

The defining relations are given as follows.

[hr, hs] = δr+s,0
1

κr

Cr − C−r

r
,

g(z, w)ψ+(C−1z)e(w) = ḡ(z, w)e(w)ψ+(C−1z),

g(z, w)ψ−(z)e(w) = ḡ(z, w)e(w)ψ−(z),

ḡ(z, w)ψ+(z)f(w) = g(z, w)f(w)ψ+(z),

ḡ(z, w)ψ−(C−1z)f(w) = g(z, w)f(w)ψ−(C−1z),

[e(z), f(w)] =
1

κ1

(
δ

(
Cw

z

)
ψ+(w)− δ

(
Cz

w

)
ψ−(z)

)
,

g(z, w)e(z)e(w) = ḡ(z, w)e(w)e(z), ḡ(z, w)f(z)f(w) = g(z, w)f(w)f(z),

Symz1,z2,z3

z2
z3

[e(z1), [e(z2), e(z3)]] = 0, Symz1,z2,z3

z2
z3

[f(z1), [f(z2), f(z3)]] = 0,

where we used Symz1,z2,z3F (z1, z2, z3) =
1
3!

∑
σ∈S3

F (zσ(1), zσ(2), zσ(3)). The
quantum toroidal algebra E is endowed with a topological Hopf algebra struc-
ture (E ,∆, ε, S). We define the topological coproduct ∆ : E → E⊗̃E , the
counit ε : E → C, and the antipode S : E → E as follows.

∆e(z) = e(C−12 z)⊗ ψ+(C−12 z) + 1⊗ e(z),

∆f(z) = f(z)⊗ 1 + ψ−(C−11 z)⊗ f(C−11 z),

∆ψ+(z) = ψ+(z)⊗ ψ+(C1z),
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∆ψ−(z) = ψ−(C2z)⊗ ψ−(z), ∆(C) = C ⊗ C,

where C1 = C ⊗ 1, C2 = 1⊗ C.

ε(e(z)) = 0, ε(f(z)) = 0, ε(ψ±(z)) = 1, ε(C) = 1,

ẽ(z) = S(e(z)) = −e(Cz)ψ+(z)−1,

f̃(z) = S(f(z)) = −ψ−(z)−1f(Cz),
S(ψ±(z)) = ψ±(C−1z), S(C) = C−1.

The quantum toroidal algebra E has three families of Fock representations
Fc(u), where c = 1, 2, 3 and u ∈ C×. We call c the color. The Fock module
Fc(u) has level sc. The Fock modules Fc(u) are irreducible with respect to
the Heisenberg algebra of E generated by {hr}r∈Z ̸=0

with relations [hr, hs] =

δr+s,0
1
κr

Cr−C−r

r . Let vc ̸= 0 be the Fock vacuum of Fc(u), we have the
identification of vector spaces

Fc(u) = C[h−r]r>0vc, hrvc = 0 (r > 0), Cvc = scvc.

The generators e(z) and f̃(z) are realized by vertex operators

e(z) → bc : Vc(z;u) :, f̃(z) → bc : Vc(z;u)
−1 :, C → sc,

where bc = −(sc − s−1c )/κ1 and

Vc(z;u) = u exp

(∑
r>0

κrh−r
1− qrc

zr

)
exp

(∑
r>0

κrhr
1− qrc

q
r
2
c z
−r

)
.

2.3 Quantum algebra K

The quantum algebra K introduced in Ref.[8] is an associative algebra with
parameters q1, q2, q3 generated by En (n ∈ Z) and Hr (r ∈ Z ̸=0), and an
invertible central element C. We set the currents E(z), K±(z), and K(z) as
follows.

E(z) =
∑
n∈Z

Enz
−n, K±(z) = exp

(∑
±r>0

Hrz
−r

)
, K(z) = K−(z)K+(C2z).

The defining relations are as follows.

[Hr,Hs] = −δr+s,0κr
1 + C2r

r
,

g(z, w)E(z)E(w) + g(w, z)E(w)E(z)
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=
1

κ1

(
g(z, w)δ

(
C2 z

w

)
K(z) + g(w, z)δ

(
C2w

z

)
K(w)

)
,

g(z, w)K±(z)E(w) = ḡ(z, w)E(w)K±(z),

Symz1,z2,z3

z2
z3

[E(z1), [E(z2), E(z3)]]

= Symz1,z2,z3X(z1, z2, z3)κ
−1
1 δ

(
C2 z1

z3

)
K−(z1)E(z2)K

+(z3),

where

X(z1, z2, z3) =
(z1 + z2)(z

2
3 − z1z2)

z1z2z3
G(z2/z3) +

(z2 + z3)(z
2
1 − z2z3)

z1z2z3
G(z1/z2)

+
(z3 + z1)(z

2
2 − z3z1)

z1z2z3

and G(w/z) stands for the power series expansion of ḡ(z, w)/g(z, w) in w/z.
The algebra K is a comodule over the quantum toroidal algebra E . We define
the map ∆ : K → E⊗̃K as follows.

∆E(z) = e(C−12 z)⊗K+(z) + 1⊗ E(z) + f̃(C2z)⊗K−(z),

∆K+(z) = ψ+(C−11 C−12 z)⊗K+(z),

∆K−(z) = ψ−(C2z)
−1 ⊗K−(z), ∆C = C ⊗ C,

where C1 = C ⊗ 1, C2 = 1⊗ C.
We introduce three families of the Fock modules FB

c of the quantum al-
gebra K, which we call the boundary Fock modules. We call c the color.
For a complex number sc ∈ C×, let H

s
1/2
c

be the Heisenberg generated by

{Hr}r∈Z ̸=0
with relations [Hr,Hs] = −δr+s,0κr

1+src
r . For c = 1, 2, 3, we de-

note FB
c the corresponding Fock modules of the Heisenberg algebra H

s
1/2
c

.

For c = 1, 2, 3, the generating function E(z) is realized by vertex operators

E(z) → kBc : K̃−c (z)K̃+
c (scz) :, C → s1/2c ,

where kBc = (1 + sc)(sd − sb)/κ1 with (c, d, b) = cycl(1, 2, 3), and

K̃±c (z) = exp

(∑
±r>0

1

1 + s−rc
Hrz

−r

)
.

3 Quadratic relations of Wx,r(A
(2)
2N)

In this section, we fix a real number r > 1 and 0 < |x| < 1. We fix the rank
N = 1, 2, 3, . . . . Throughout this section we set
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q1 = x2r, q2 = x−2, q3 = x2(1−r).

3.1 Basic W -current

Consider a K module defined as a tensor product of N Fock modules F2(ui)
of E with a boundary Fock module FB

2 :

F2(u1)⊗F2(u2)⊗ · · · ⊗ F2(uN )⊗FB
2 .

The total level is C = x−N−
1
2 . The current E(z) acts as a sum of vertex

operators in N + 1 bosons of the form

∆(N)E(z) = b2

N∑
k=1

Λk(z) + kB2 Λ0(z) + b2

N∑
k=1

Λk̄(z).

Here, for k = 1, 2, . . . , N we set

Λk(z) = 1⊗ · · · ⊗ V2(akz;uk)⊗ ψ+(s−12 ak+1z)⊗ · · · ⊗ ψ+(s−12 aNz)⊗K+(z),

Λ0(z) = 1⊗ · · · ⊗ 1⊗ K̃2(z),

Λk̄(z) = 1⊗ · · · ⊗ V −12 (a−1k z;uk)⊗ ψ−(a−1k+1z)
−1 ⊗ · · · ⊗ ψ−(a−1N z)−1 ⊗K−(z),

where ak are given by ak = xN−k+
1
2 . Define the dressed current Λi(z) de-

pending on µ = −x−2N−1 by

Λi(z) = Λi(z)∆
(N)K+

µ (z)−1, K+
µ (z) =

∞∏
s=0

K+(µ−sz), i = 1, . . . , N, 0, N̄ , . . . , 1̄.

For i, j = 1, 2, 3, . . . we set

fi,j(z) = exp

(
−
∞∑

m=1

1

m
[(r − 1)m]x[rm]x(x− x−1)2×

×
[Min(i, j)m]x

(
[(N + 1−Max(i, j))m]x − [(N −Max(i, j))m]x

)
[m]x

(
[(N + 1)m]x − [Nm]x

) zm

)
,

d(z) =
(1− x2r−1z)(1− x−2r+1z)

(1− xz)(1− x−1z)
, c(x, r) = [r]x[r − 1]x(x− x−1).

We define the basic W -current T1(z) for Wx,r

(
A

(2)
2N

)
by

T1(z) =

N∑
k=1

Λk(z) +
kB2
b2

Λ0(z) +

N∑
k=1

Λk̄(z).
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Here indices are ordered as

1 ≺ 2 ≺ · · · ≺ N ≺ 0 ≺ N̄ ≺ · · · ≺ 2̄ ≺ 1̄.

Lemma 1. [8] 1 In the case of Wx,r

(
A

(2)
2N

)
, the dressed currents Λi(z) satisfy

f1,1

(
z2
z1

)
Λi(z1)Λj(z2) = d

(
x−1z2
z1

)
: Λi(z1)Λj(z2) :, i ≺ j, j ̸= ī,

f1,1

(
z2
z1

)
Λj(z1)Λi(z2) = d

(
xz2
z1

)
: Λj(z1)Λi(z2) :, i ≺ j, j ̸= ī,

f1,1

(
z2
z1

)
Λ0(z1)Λ0(z2) = d

(
z2
z1

)
: Λ0(z1)Λ0(z2) :,

f1,1

(
z2
z1

)
Λi(z1)Λi(z2) =: Λi(z1)Λi(z2) :, i ̸= 0,

f1,1

(
z2
z1

)
Λk(z1)Λk̄(z2) = d

(
x−1z2
z1

)
d

(
x−2N−2+2kz2

z1

)
: Λk(z1)Λk̄(z2) :, 1 ≤ k ≤ N,

f1,1

(
z2
z1

)
Λk̄(z1)Λk(z2) = d

(
xz2
z1

)
d

(
x2N+2−2kz2

z1

)
: Λk̄(z1)Λk(z2) :, 1 ≤ k ≤ N.

3.2 Quadratic relations

In this section, we introduce the higherW -currentsTj(z) and obtain quadratic
relations of them. We define the higher W -currents Ti(z) (i ∈ N) for

Wx,r

(
A

(2)
2N

)
by fusion relation

lim
z1→x±(i+j)z2

(
1− x±(i+j)z2

z1

)
fi,j

(
z2
z1

)
Ti(z1)Tj(z2)

= ∓c(x, r)
Min(i,j)−1∏

l=1

d(x2l+1) Ti+j(x
±iz2), i, j ≥ 1,

and T0(z) = 1. We obtain Ti(z) = 0 for i ≥ 2N + 2.

Proposition 1. [12] In the case of Wx,r

(
A

(2)
2N

)
, the W -currents Ti(z) satisfy

the duality

T2N+1−i(z) =
[r − 1

2 ]x

[ 12 ]x

N−i∏
k=1

d(x2k)Ti(z), 0 ≤ i ≤ N. (1)

1 Frenkel-Reshetikhin [5] constructed the bosonic operators ΛFR
i (z) in kernel of

screening operators, that satisfy the same normal ordering relations as those of Lemma
1 in Ref.[8].
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Theorem 1. [12] In the case of Wx,r

(
A

(2)
2N

)
, the W -currents Ti(z) satisfy

the set of quadratic relations

fi,j

(
z2
z1

)
Ti(z1)Tj(z2)− fj,i

(
z1
z2

)
Tj(z2)Ti(z1)

= c(x, r)

i∑
k=1

k−1∏
l=1

d(x2l+1)×

×
(
δ

(
x−j+i−2kz2

z1

)
fi−k,j+k(x

j−i)Ti−k(x
kz1)Tj+k(x

−kz2)

− δ

(
xj−i+2kz2

z1

)
fi−k,j+k(x

−j+i)Ti−k(x
−kz1)Tj+k(x

kz2)

)
+c(x, r)

i−1∏
l=1

d(x2l+1)

N+i−j∏
l=N+1−j

d(x2N )

×
(
δ

(
x−2N+j−i−1z2

z1

)
Tj−i(x

−iz2)− δ

(
x2N−j+i+1z2

z1

)
Tj−i(x

iz2)

)
,

1 ≤ i ≤ j ≤ N. (2)

Definition 1. Let W be the free complex associative algebra generated by
elements Ti[m],m ∈ Z, 0 ≤ i ≤ 2N + 1, IK the left ideal generated by
elements Ti[m],m ≥ K ∈ N, 0 ≤ i ≤ 2N + 1, and

Ŵ = lim
←
W/IK .

The deformed W -algebra Wx,r

(
A

(2)
2N

)
is the quotient of Ŵ by the two-sided

ideal generated by the coefficients of the generating series which are the
differences of the right hand sides and of the left hand sides of the re-
lations (1) and (2), where the generating series Ti(z) are replaced with
Ti(z) =

∑
m∈Z Ti[m]z−m, 0 ≤ i ≤ 2N + 1.

4 Quadratic relations of q-YL1,L2,L3

We fix natural numbers L1, L2, L3 such that L1+L2+L3 ≥ 1, L1, L2, L3 ∈ N.
We fix real numbers λ1, λ2, λ3 such that λ1+λ2+λ3 = 0. We fix 0 < |x| < 1.
Throughout this section we set

q1 = x2λ1 , q2 = x2λ2 , q3 = x2λ3 , L = L1 + L2 + L3.
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4.1 Basic W -current

Consider a tensor product of L Fock modules of E :

Fc1(u1)⊗ · · · ⊗ FcL(uL).

Here we choose colors c1, c2, . . . , cL ∈ {1, 2, 3} such that

Lc = n
(
I(c)

)
, I(c) = {1 ≤ i ≤ L|ci = c} (c = 1, 2, 3).

The total level of L Fock modules is C =
∏L

j=1 scj . The current e(z) acts as
a sum of vertex operators in L bosons of the form

∆(L−1)e(z) =

L∑
i=1

bciΛi(z).

Here, for i = 1, 2, . . . , L we set

Λi(z) = 1⊗ · · · ⊗ 1⊗ Vci(aiz;ui)⊗ ψ+(s−1ci+1
ai+1z)⊗ · · · ⊗ ψ+(s−1cL aLz),

where ai are given by ai =
∏L

j=i+1 s
−1
cj . Define the dressed currents Λi(z)

depending on free parameter µ by

Λi(z) = Λi(z)∆
(L−1)K+

µ (z)−1, K+
µ (z) =

∞∏
s=0

K+(µ−sz), µ = x2α.

For i, j = 1, 2, 3, . . ., we set

gi,j(z) = exp

( ∞∑
m=1

1

m

[λ1m]x[λ3m]x[Min(i, j)λ2m]x[(α−Max(i, j)λ2)m]x
[λ2m]x[αm]x

(x− x−1)2zm

)
,

dλ(z) =
(1− xλ1−λ3z)(1− xλ3−λ1z)

(1− xλ2z)(1− x−λ2z)
, cλ =

[λ1]x[λ3]x
[λ2]x

(x− x−1),

γc(z) =
(1− x2λcz)(1− x−2λcz)

(1− x2λ2z)(1− x−2λ2z)
, c = 1, 2, 3.

We define the basic W -current T1(z) for q-YL1,L2,L3 by

T1(z) =

L∑
i=1

bciΛi(z).

Lemma 2. [8] In the case of q-YL1,L2,L3 , the dressed currents Λi(z) satisfy

g1,1

(
z2
z1

)
Λi(z1)Λj(z2) = dλ

(
xλ2z2
z1

)
: Λi(z1)Λj(z2) :, 1 ≤ i < j ≤ L,
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g1,1

(
z2
z1

)
Λj(z1)Λi(z2) = dλ

(
x−λ2z2
z1

)
: Λj(z1)Λi(z2) :, 1 ≤ i < j ≤ L,

g1,1

(
z2
z1

)
Λi(z1)Λi(z2) = γci

(
z2
z1

)
: Λi(z1)Λi(z2) :, 1 ≤ i ≤ L.

4.2 Quadratic relations

In this section, we introduce the higherW -currentsTi(z) and obtain quadratic
relations of them. We define the higher W -currents Ti(z), (i ∈ N) for q-
YL1,L2,L3 by fusion relation

lim
z1→x±(i+j)λ2z2

(
1− x±(i+j)λ2z2

z1

)
gi,j

(
z2
z1

)
Ti(z1)Tj(z2)

= ∓cλ
Min(i,j)−1∏

l=1

dλ(x
(2l+1)λ2) Ti+j(x

±iλ2z2), i, j ≥ 1,

and T0(z) = 1.

Proposition 2. In the case of q-YL1,L2,L3 , the W -currents Ti(z) don’t van-
ish.

Ti(z) ̸= 0, i ∈ N.

Upon the specialization (L1, L2, L3) = (0, N +1, 0), the W -currents Ti(z)

of q-YL1,L2,L3 coincide with those of Wx,r

(
A

(1)
N

)
in Refs.[1, 2]. Upon the

specialization (L1, L2, L3) = (0, N + 1,M + 1), the W -currents Ti(z) of q-
YL1,L2,L3

coincide with those of Wx,r

(
A(M,N)(1)

)
in Refs.[10, 11].

Ti(z) = 0 (i ≥ N + 1) for Wx,r

(
A

(1)
N

)
: non-super,

Ti(z) ̸= 0 (i ∈ N) for Wx,r

(
A(M,N)(1)

)
: super.

Theorem 2. 2 In the case of q-YL1,L2,L3
, the W -currents Ti(z) satisfy the

set of quadratic relations

gi,j

(
z2
z1

)
Ti(z1)Tj(z2)− gj,i

(
z1
z2

)
Tj(z2)Ti(z1)

= cλ

i∑
k=1

k−1∏
l=1

dλ(x
(2l+1)λ2)×

2 Harada, Matsuo, Noshita and Watanabe conjectured similar quadratic relations
in Ref.[13]. The quadratic relations (3) of q-YL1,L2,L3

in Theorem 2 can be proved

similarly to those of Wx,r

(
A(M,N)(1)

)
in Refs.[10, 11].
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×
(
δ

(
x(j−i+2k)λ2z2

z1

)
gi−k,j+k(x

(i−j)λ2)Ti−k(x
−kλ2z1)Tj+k(x

kλ2z2)

− δ

(
x(−j+i−2k)λ2z2

z1

)
gi−k,j+k(x

(j−i)λ2)Ti−k(x
kλ2z1)Tj+k(x

−kλ2z2)

)
,

1 ≤ i ≤ j. (3)

Upon the specialization (L1, L2, L3) = (0, N +1,M +1) and (λ1, λ2, λ3) =
(r,−1, 1− r), the set of quadratic relations (3) of q-YL1,L2,L3 coincides with
those of Wx,r

(
A(M,N)(1)

)
in Refs.[10, 11].

Definition 2. Let W be the free complex associative algebra generated by
elements Ti[m],m ∈ Z, i ∈ N, IK the left ideal generated by elements
Ti[m],m ≥ K ∈ N, i ∈ N, and

Ŵ = lim
←
W/IK .

The q-YL1,L2,L3
is the quotient of Ŵ by the two-sided ideal generated by

the coefficients of the generating series which are the differences of the right
hand sides and of the left hand sides of the relations (3), where the generating
series Ti(z) are replaced with Ti(z) =

∑
m∈Z Ti[m]z−m, i ∈ N.
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