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Abstract

We find the free field construction of the basic W -current and screening currents for the deformed

W -superalgebra Wq,t

(
A(M,N)

)
associated with Lie superalgebra of type A(M,N). Using this free

field construction, we introduce the higher W -currents and obtain a closed set of quadratic relations

among them. These relations are independent of the choice of Dynkin diagrams for the Lie superal-

gebra A(M,N), though the screening currents are not. This allows us to define Wq,t

(
A(M,N)

)
by

generators and relations.

1 Introduction

The deformed W -algebra Wq,t

(
g
)
is a two parameter deformation of the classical W -algebra W(g).

Shiraishi et al. [1] obtained a free field construction of the deformed Virasoro algebra Wq,t

(
sl(2)

)
, which

is a one-parameter deformation of the Virasoro algebra, to construct a deformation of the correspondence

between conformal field theory and the Calogero-Sutherland model. The theory of the deformed W -

algebras Wq,t(g) has been developed in papers [2–11]. However, in comparison with the conformal case,

the theory of the deformed W -algebras is still not fully developed and understood. For that matter it is

worthwhile to concretely construct Wq,t(g) in each case. This paper is a continuation of the paper [11]

for Wq,t

(
A(1, 0)

)
. The purpose of this paper is to generalize the result of case A(1, 0) to A(M,N).

We follow the method of [10], where a free field construction is found for the deformed Wq,t

(
sl(3)

)
and Wq,t

(
A(1, 0)

)
. Starting from a W current given as a sum of three vertex operators

T1(z) = Λ1(z) + Λ2(z) + Λ3(z) ,

and two screening currents Sj(z) given by a vertex operator, the authors of [10] determined them simul-

taneously by demanding that T1(z) and Sj(w) commute up to a total difference. Higher currents Ti(z)

are defined inductively by the fusion relation

Res
w=xiz

T1(w)Ti−1(z) = ciTi(x
i−1z)
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with appropriate constants x and ci. In the case of Wq,t

(
sl(3)

)
it is known that they truncate, i.e.

T3(z) = 1 and Ti(z) = 0 (i ≥ 4), and that T1(z) and T2(z) satisfy the quadratic relations [2, 3]

f1,1

(
z2
z1

)
T1(z1)T1(z2)− f1,1

(
z1
z2

)
T1(z2)T1(z1) = c

(
δ

(
x−2z2
z1

)
T2(x

−1z2)− δ

(
x2z2
z1

)
T2(xz2)

)
,

f1,2

(
z2
z1

)
T1(z1)T2(z2)− f2,1

(
z1
z2

)
T2(z2)T1(z1) = c

(
δ

(
x−3z2
z1

)
− δ

(
x3z2
z1

))
,

f2,2

(
z2
z1

)
T2(z1)T2(z2)− f2,2

(
z1
z2

)
T2(z2)T2(z1) = c

(
δ

(
x−2z2
z1

)
T1(x

−1z2)− δ

(
x2z2
z1

)
T1(xz2)

)
with appropriate constants x, c, and functions fi,j(z). In the case of Wq,t

(
A(1, 0)

)
, it was shown in [11]

that such truncation for Ti(z) does not take place and that an infinite number of quadratic relations is

satisfied by an infinite number of Ti(z)’s. In the present paper, we extend this result to general A(M,N).

Following the method of [10], we construct the basic W -current T1(z) together with the screening

currents Sj(w) for Wq,t

(
A(M,N)

)
(See (3) and (4)). We introduce the higher W -currents Ti(z) (See

(62)) and obtain a closed set of quadratic relations among them (See (64)). We show further that these

relations are independent of the choice of Dynkin diagrams for the Lie superalgebra A(M,N), though

the screening currents are not. This allows us to define Wq,t

(
A(M,N)

)
by generators and relations.

Recently, Feigin, Jimbo, Mukhin, and Vilkoviskiy [9] constructed the basic W -currents T1(z) and the

screening currents for Wq,t(g) in types A,B,C,D including twisted and supersymmetric cases. Their

construction method is completely different from ours. They gave a uniform construction of the basic

W -currents T1(z) on a tensor product of Fock spaces of the quantum toroidal gl1 algebra E and newly

introduced comodule algebra K over E . Their motivation is to understand a commutative family of

integrals of motion associated with affine Dynkin diagrams. They constructed the local integrals of motion

associated with Dynkin diagrams of all non-exceptional types except D
(2)
l+1 by integrals of products of

T1(z) with the elliptic theta functions. The present paper is not a special case of Ref. [9]. Our motivation

is to give the definition of Wq,t(g) by generators and relations. We introduce the higher W -currents

Ti(z) (i = 2, 3, 4, · · · ) and obtain a closed set of quadratic relations among them, which allows us to

define Wq,t

(
A(M,N)

)
by generators and relations (See Theorem 4.1). It is still an open problem to find

quadratic relations of the deformed W -algebras Wq,t(g) except AN , A(M,N), and the twisted algebra

A
(2)
2 [4, 8]. In Ref. [9] Feigin, Jimbo, Mukhin, and Vilkoviskiy constructed the local integrals of motion

by using T1(z), but did not study the higher W -currents Ti(z) (i = 2, 3, 4, · · · ).
The text is organized as follows. In Section 2, we prepare the notation and formulate the problem.

In Section 3, we give a free field construction of the basic W -current T1(z) and the screening currents

Sj(w) for the deformed W -algebra Wq,t

(
A(M,N)

)
. In Section 4, we introduce higher W -currents Ti(z)

and present a closed set of quadratic relations among them. We show that these quadratic relations are

independent of the choice of the Dynkin diagram for the Lie superalgebra A(M,N). We also obtain the

q-Poisson algebra in the classical limit. Section 5 is devoted to conclusion and discussion.
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2 Preliminaries

In this section we prepare the notation and formulate the problem. Throughout this paper we fix a real

number r > 1 and a complex number x with 0 < |x| < 1.

2.1 Notation

In this section we use complex numbers a, w (w ̸= 0), q (q ̸= 0,±1), and p with |p| < 1. For any integer

n, define q-integer

[n]q =
qn − q−n

q − q−1
.

We use symbols for infinite products

(a; p)∞ =

∞∏
k=0

(1− apk), (a1, a2, . . . , aN ; p)∞ =

N∏
i=1

(ai; p)∞

for complex numbers a1, a2, . . . , aN . The following standard formulae are useful.

exp

(
−

∞∑
m=1

1

m
am

)
= 1− a, exp

(
−

∞∑
m=1

1

m

am

1− pm

)
= (a; p)∞.

We use the elliptic theta function Θp(w) and the compact notation Θp(w1, w2, . . . , wN ) as

Θp(w) = (p, w, pw−1; p)∞, Θp(w1, w2, . . . , wN ) =

N∏
i=1

Θp(wi)

for complex numbers w1, w2, . . . , wN ̸= 0. Define δ(z) by the formal series

δ(z) =
∑
m∈Z

zm.

2.2 Lie superalgebra A(M,N)

In this section we introduce the Lie superalgebra A(M,N). Let Z2 = {0̄, 1̄} denote the additive group of

two elements. If the vector space V is a direct sum of two vector subspaces V0̄ and V1̄, then V = V0̄ ⊕ V1̄

is called a Z2-graded vector space. An element v ∈ V has a unique expression of the form v = v0̄ + v1̄

(vi ∈ Vi). If v is an element of either V0̄ or V1̄, v is called homogeneous. For homogeneous element v ∈ Vi,

we set the degree |v| = i. A Z2-graded vector space g = g0̄ ⊕ g1̄ possessing bilinear multiplication [·, ·] is
called the Lie superalgebra if it satisfies the conditions

1. [gi, gj ] ⊂ gi+j (i, j ∈ Z2),

2. [y, x] = −(−1)|x||y|[x, y],

3. [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]],

where x, y, z ∈ g are homogeneous elements. We call this bilinear multiplication [·, ·] the bracket product.
Let p, i be Z2-graded vector subspace of g. p is called a Lie sub-superalgebra of g, if p satisfies [p, p] ⊂ p.
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i is called an ideal of g, if i satisfies [i, g] ⊂ i. g is called a simple Lie superalgebra, if it has no ideal except

for {0} and g itself.

Let (End(V ))k = {f ∈ End(V )| f(Vi) ⊂ Vi+k} (k ∈ Z2). If f is an element of either (End(V ))0̄ or

(End(V ))1̄, f is called homogeneous. For homogeneous element f ∈ (End(V ))k, we set the degree |f | = k.

We can make an associative algebra End(V ) into a Lie superalgebra by letting

[f, g] = f · g − (−1)|f ||g|g · f, (1)

for homogeneous elements f, g and extending [·, ·] by bilinearity. We fix integers M,N (M + N ≥
1,M,N = 0, 1, 2, . . .). Let the vector subspaces V0̄ = CM+1 and V1̄ = CN+1 respectively. (End(V ))k

(k ∈ Z2) can be realized as follows.

(End(V ))0̄ =


 A 0

0 D

∣∣∣∣∣∣A ∈ MM+1,M+1(C), D ∈ MN+1,N+1(C)

 ,

(End(V ))1̄ =


 0 B

C 0

∣∣∣∣∣∣B ∈ MM+1,N+1(C), C ∈ MN+1,M+1(C)

 .

For x =

 A B

C D

 , y =

 A′ B′

C ′ D′

 ∈ End(V ), the bracket of these elements can be computed

following rule (1) as follows.

[x, y] =

 AA′ −A′A+BC ′ +B′C AB′ +BD′ − (A′B +B′D)

CA′ +DC ′ − (C ′A+D′C) DD′ −D′D + CB′ + C ′B

 .

End(V0̄ ⊕ V1̄), equipped with the above bracket product, forms a Lie superalgebra called the general

linear Lie superalgebra and denoted by

gl(M + 1|N + 1).

For x =

 A B

C D

 ∈ gl(M + 1|N + 1) we define the supertrace str(x) as

str(x) = tr(A)− tr(D),

where tr(y) denotes the trace of square matrix y. We have str([x, y]) = 0 (x, y ∈ gl(M +1|N +1)). Thus

the vector subspace

sl(M + 1|N + 1) = {x ∈ gl(M + 1|N + 1)|str(x) = 0}

is a Lie sub-superalgebra of gl(M +1|N +1), and it is called the special linear Lie superalgebra. sl(M +

1|N +1) is simple for M ̸= N . For M = N , sl(M +1|N +1) contains a nontrivial ideal generated by the

identity matrix IM+N+2. We introduce the simple Lie superalgebra A(M,N) as

A(M,N) =

 sl(M + 1|N + 1) (M ̸= N ≥ 0,M +N ≥ 1),

sl(M + 1|N + 1)/CIM+N+2 (M = N ≥ 1).
(2)
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2.3 Dynkin diagram of A(M,N)

In this section we introduce Dynkin diagrams of the Lie superalgebra A(M,N). We set L = M +N +1.

Let ε1, ε2, . . . , εM+1 and δ1, δ2, . . . , δN+1 be a basis of RL+1 with an inner product ( , ) such that

(εi, εj) = δi,j (1 ≤ i, j ≤ M + 1), (δi, δj) = −δi,j (1 ≤ i, j ≤ N + 1),

(εi, δj) = (δj , εi) = 0 (1 ≤ i ≤ M + 1, 1 ≤ j ≤ N + 1).

The standard fundamental system Πst for the Lie superalgebra A(M,N) is given as

Πst = {αi = εi − εi+1, αM+1 = εM+1 − δ1, αM+1+j = δj − δj+1|1 ≤ i ≤ M, 1 ≤ j ≤ N}.

The standard Dynkin diagram Φst for the Lie superalgebra A(M,N) is given as

Φst =

α1 αM αM+1 αM+2 αM+N+1

· · · · · ·· · · · · ·

Here a circle represents an even simple root and a crossed circle represents an odd isotropic simple root.

The Lie superalgebra A(M,N) defined in (2) can be reconstructed from this standard Dynkin diagram

Φst. Conversely, the Dynkin diagram Φst can be constructed from the Lie superalgebra A(M,N). See

details in Refs. [12] and [13].

There is an indeterminacy in how to choose Dynkin diagram for the Lie superalgebra A(M,N), which

is brought by fundamental reflections rαi . For the fundamental system Π, the fundamental reflection rαi

(αi ∈ Π) satisfies

rαi(αj) =


−αi if j = i,

αi + αj if j ̸= i, (αi, αj) ̸= 0,

αj if j ̸= i, (αi, αj) = 0.

For an odd isotropic root αi, we call the fundamental reflection rαi
odd reflection. For an even root

αi, we call the fundamental reflection rαi
real reflection. The Dynkin diagram transformed by rαi

is

represented as rαi
(Φ). Real reflections don’t change Dynkin diagram. We illustrate the notion of odd

reflections as follows.

· · · · · ·

αi−1 αi αi+1 rαi

· · · · · ·
αi−1 + αi −αi αi + αi+1

· · · · · ·

αi−1 αi αi+1 rαi

· · · · · ·
αi−1 + αi −αi αi + αi+1

· · ·
α1 α2 rα1

· · ·
−α1 α1 + α2
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· · ·
αL−1 αL rαL

· · ·
αL−1 + αL −αL

Example A(1, 0) and A(0, 1)

rδ1−ε1δ1 − ε1 ε1 − ε2 ε1 − δ1 δ1 − ε2 rδ1−ε2 ε1 − ε2 ε2 − δ1

Here Π1 = {δ1 − ε1, ε1 − ε2} and Π2 = {ε1 − δ1, δ1 − ε2} are the other fundamental systems.

Example A(1, 1)

ε1 − ε2 ε2 − δ1 δ1 − δ2 rε2−δ1 ε1 − δ1 δ1 − ε2 ε2 − δ2 rε1−δ1 δ1 − ε1 ε1 − ε2 ε2 − δ2

Here Π1 = {ε1 − δ1, δ1 − ε2, ε2 − δ2} and Π2 = {δ1 − ε1, ε1 − ε2, ε2 − δ2} are the other fundamental

systems.

Example A(2, 0) and A(0, 2)

ε1 − ε2 ε2 − ε3 ε3 − δ1 rε3−δ1 ε1 − ε2 ε2 − δ1 δ1 − ε3

δ1 − ε1 ε1 − ε2 ε2 − ε3 rε1−δ1 ε1 − δ1 δ1 − ε2 ε2 − ε3

rε2−δ1

Here Π1 = {ε1 − ε2, ε2 − δ1, δ1 − ε3}, Π2 = {ε1 − δ1, δ1 − ε2, ε2 − ε3}, and Π3 = {δ1 − ε1, ε1 − ε2, ε2 − ε3}
are the other fundamental systems.

2.4 Ding-Feigin’s construction

We introduce the Heisenberg algebra Hq,t with generators ai(m), Qi (m ∈ Z, 1 ≤ i ≤ L) satisfying

[ai(m), aj(n)] =
1

m
Ai,j(m)δm+n,0 (m,n ̸= 0, 1 ≤ i, j ≤ L),

[ai(0), Qj ] = Ai,j(0) (1 ≤ i, j ≤ L).
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The remaining commutators vanish. We impose the following conditions on the parameters Ai,j(m) ∈ C:

Ai,i(m) = 1 (m ̸= 0, 1 ≤ i ≤ L), Ai,j(m) = Aj,i(−m) (m ∈ Z, 1 ≤ i ̸= j ≤ L),

det
(
(Ai,j(m))

L
i,j=1

)
̸= 0 (m ∈ Z).

We use the normal ordering symbol : : that satisfies

: ai(m)aj(n) :=

 ai(m)aj(n) (m < 0),

aj(n)ai(m) (m ≥ 0)
(m,n ∈ Z, 1 ≤ i, j ≤ L),

: ai(0)Qj :=: Qjai(0) := Qjai(0) (1 ≤ i, j ≤ L).

Next, we work on Fock space of the Heisenberg algebra. Let T1(z) be a sum of vertex operators

T1(z) = g1Λ1(z) + g2Λ2(z) + · · ·+ gL+1ΛL+1(z), (3)

Λi(z) = e
∑L

j=1 λi,j(0)aj(0) : exp

 L∑
j=1

∑
m̸=0

λi,j(m)aj(m)z−m

 : (1 ≤ i ≤ L+ 1).

We call T1(z) the basic W -current. We introduce the screening currents Sj(w) (1 ≤ j ≤ L) as

Sj(w) = w
1
2Aj,j(0)eQjwaj(0) : exp

∑
m̸=0

sj(m)aj(m)w−m

 : (1 ≤ j ≤ L). (4)

The complex parameters Ai,j(m), λi,j(m), sj(m) and gi are to be determined through the construction

given below.

Quite generally, given two vertex operators V (z), W (w), their product has the form

V (z)W (w) = φV,W (z, w) : V (z)W (w) : (|z| ≫ |w|)

with some formal power series φV,W (z, w) ∈ C[[w/z]]. The vertex operators V (z) and W (w) are said to

be mutually local if the following two conditions hold.

(i) φV,W (z, w) and φW,V (w, z) converge to rational functions,

(ii) φV,W (z, w) = φW,V (w, z).

Under this setting, we are going to determine the W -current T1(z) and the screening currents Sj(w)

that satisfy the following mutual locality (5), commutativity (6), and symmetry (7).

Mutual Locality Λi(z) (1 ≤ i ≤ L + 1) and Sj(w) (1 ≤ j ≤ L) are mutually local, the operator

product expansions of their products have at most one pole and one zero, and

φΛi,Sj
(z, w) = φSj ,Λi

(w, z) =
w − z

pi,j

w − z
qi,j

(1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L). (5)

We allow the possibility pi,j = qi,j , in which case Λi(z)Sj(w) = Sj(w)Λi(z) =: Λi(z)Sj(w) :.
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Commutativity T1(z) commutes with Sj(w) (1 ≤ j ≤ L) up to a total difference

[T1(z), Sj(w)] = Bj(z)
(
δ
(qj,jw

z

)
− δ

(qj+1,jw

z

))
(1 ≤ j ≤ L) , (6)

with some currents Bj(z) (1 ≤ j ≤ L).

Symmetry For S̃j(w) = e−QjSj(w) (1 ≤ j ≤ L), we impose

φS̃k,S̃l
(w, z) = φS̃l,S̃k

(w, z) (1 ≤ k, l ≤ L),

φS̃k,S̃l
(w, z) = 1 (|k − l| ≥ 2, 1 ≤ k, l ≤ L). (7)

For simplicity, we impose further the following conditions.

qi,j (1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L) are distinct, (8)∣∣∣∣qj+1,j

qj,j

∣∣∣∣ ̸= 1 (1 ≤ j ≤ L), − 1 < Ak,k+1(0) < 0 (1 ≤ k ≤ L− 1). (9)

Consider the following transformations which map operators of form (3), (4) into operators of the

same form.

(i) Rearranging indices

Λi(z) 7→ Λi′(z), Sj(w) 7→ Sj′(w), (10)

where i → i′ is a permutation of the set 1, 2, · · · , L + 1 and where j → j′ is a permutation of the set

1, 2, · · · , L.
(ii) Scaling variables: Λi(z) 7→ Λi(sz) (s ̸= 0), i.e.

λi,j(m) 7→ smλi,j(m) qi,j 7→ sqi,j , pi,j 7→ spi,j (m ̸= 0, 1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L). (11)

(iii) Scaling free fields:

aj(m) 7→ αj(m)−1aj(m), sj(m) 7→ αj(m)sj(m),

λi,j(m) 7→ λi,j(m)αj(m)
(m ̸= 0, 1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L),

Ai,j(m) 7→ αi(m)−1Ai,j(m)αj(m) (m ̸= 0, 1 ≤ i, j ≤ L),

(12)

where αj(m) ̸= 0 (1 ≤ j ≤ L) and αj(−m) = αj(m)−1 (m > 0, 1 ≤ j ≤ L).

3 Free field construction

In this section we give a free field construction of the basic W -current and the screening currents for

Wq,t

(
A(M,N)

)
.
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3.1 Free field construction

In Ding-Feigin’s construction [10], there are 2L cases to be considered separately according to values of

Aj,j(0) (1 ≤ j ≤ L). We fix a pair of integers j1, j2, . . . , jK (1 ≤ K ≤ L) satisfying 1 ≤ j1 < j2 < · · · <
jK ≤ L. Hereafter, we study the case the following conditions for Aj,j(0) (1 ≤ j ≤ L) are satisfied.

Aj,j(0) = 1 if j = j1, j2, . . . , jK , Aj,j(0) ̸= 1 if j ̸= j1, j2, . . . , jK .

First, we prepare the parameters Ai,j(0) to give the free field construction. We have already introduced

L×L symmetric matrix (Ai,j(0))
L
i,j=1 as parameters of the Heisenberg algebra. To write pi,j , qi,j , Ai,j(m),

sj(m), and λi,j(m) explicitly, it is convenient to introduce (L+1)×(L+1) symmetric matrix (Ai,j(0))
L
i,j=0

uniquely extended from (Ai,j(0))
L
i,j=1 as follows.

A0,1(0) =

 A1,2(0) if j1 ̸= 1,

−1−A1,2(0) if j1 = 1,
A0,L(0) =

 AL,L−1(0) if jK ̸= L,

−1−AL,L−1(0) if jK = L,

A0,0(0) =

 −2A0,L(0) if K = even,

1 if K = odd,
A0,i(0) = 0 (i ̸= 0, 1, L). (13)

The extended matrix (Ai,j(0))
L
i,j=0 are explicitly written by β = A1,2(0) as follows (See Lemma 3.10).

Ai,i(0) =


1 if i ∈ Ĵ ,

−2β if i /∈ Ĵ , i ∈ Î(β),

2(1 + β) if i /∈ Ĵ , i ∈ Î(−1− β)

(1 ≤ i ≤ L+ 1),

Aj−1,j(0) = Aj,j−1(0) =

 β if j ∈ Î(β),

−1− β if j ∈ Î(−1− β)
(1 ≤ j ≤ L+ 1),

Ak,l(0) = Al,k(0) = 0 (|k − l| ≥ 2, 1 ≤ k, l ≤ L or k = 0, l ̸= 0, 1, L) . (14)

Here we set

Ĵ =

 {j1, j2, . . . , jK} if K = even,

{j1, j2, . . . , jK , L+ 1} if K = odd,
Î(δ) = {1 ≤ j ≤ L+ 1|Aj−1,j(0) = δ}.

We understand subscripts of Ai,j(0) with mod.L+1, i.e. A0,0(0) = AL+1,L+1(0). We note Î(β)∪ Î(−1−
β) = {1, 2, . . . , L+ 1}.

Next, we introduce the two parameters x and r defined as

x2r =
q2,1
q1,1

, r =


1

1 + β
for |Î(β)| > |Î(−1− β)|,

− 1

β
for |Î(β)| ≤ |Î(−1− β)|,

(15)

where |Î(δ)| represents the number of elements in Î(δ). By this parametrization, we have (19). From (9)

and qi,j ̸= 0, we obtain |x| ̸= 0, 1 and r > 1. In this paper, we focus our attention to

0 < |x| < 1, r > 1.
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For the case of |x| > 1, we obtain the same results under the change x → x−1.

To give the free field construction, we set D(k, l; Φ) as

D(k, l; Φ) =

 (r − 1)
∣∣∣Î (k + 1, l + 1;− 1

r , Φ̂
)∣∣∣+ ∣∣∣Î (k + 1, l + 1; 1−r

r , Φ̂
)∣∣∣ (0 ≤ k ≤ l ≤ L),

0 (0 ≤ l < k ≤ L),

Î(k, l; δ, Φ̂) = {1 ≤ j ≤ L+ 1|k ≤ j ≤ l, Aj−1,j(0) = δ} (1 ≤ k ≤ l ≤ L+ 1). (16)

D(k, l; Φ) is given by using the matrix (Ai,j(0))
L
i,j=0. The matrix (Ai,j(0))

L
i,j=0 can be constructed from

the Dynkin diagrams Φ and Φ̂, which we will introduce below.

Example We fix integers M,N (M ≥ N ≥ 0,M + N ≥ 1). We set K = 1, L = M + N + 1, and

j1 = M + 1. We have

Ai,i(0) =


2(r−1)

r if 1 ≤ i ≤ M,

1 if i = 0,M + 1,

2
r if M + 2 ≤ i ≤ L,

Ai,i−1(0) = Ai−1,i(0) =

 1−r
r if 1 ≤ i ≤ M + 1,

− 1
r if M + 2 ≤ i ≤ L+ 1,

Ak,l(0) = 0 (|k − l| ≥ 2, 1 ≤ k, l ≤ L or k = 0, l ̸= 0, 1, L) .

Î

(
1− r

r

)
= {1, 2, . . . ,M + 1}, Î

(
1

r

)
= {M + 2, . . . , L+ 1}.

We picture L × L matrix (Ai,j(0))
L
i,j=1 as the standard Dynkin diagram Φst of A(M,N) in Section 2.

We picture (L+ 1)× (L+ 1) matrix (Ai,j(0))
L
i,j=0 as the Dynkin diagram Φ̂st as follows.

· · · · · · · · ·

α1 αM αM+1 αM+2 αL

α0 = αL+1

Φ̂st =

1−r
r − 1

r

1−r
r

1−r
r

1−r
r − 1

r − 1
r − 1

r

Here a circle represents an even simple root (αi, αi) = ±2 and a crossed circle represents an odd isotropic

simple root (αi, αi) = 0. The inner product (αi, αj) of the roots and the parameters Ai,j(0) correspond

as (αi, αi) = ±2 ⇔ Ai,i(0) ̸= 1, (αi, αi) = 0 ⇔ Ai,i(0) = 1, (αi, αj) = ±1 ⇔ Ai,j(0) ̸= 0 (i ̸= j).

As additional information, the values of the parameters Aj−1,j(0) are written beside the line segment

connecting αj−1 and αj . We have

D(0, L; Φst) = (N + 1)r +M −N.
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Example For L = 3, K = 2, j1 = 1, j2 = 3, we have

(Ai,j(0))
3
i,j=0 =


2(r−1)

r
1−r
r 0 1−r

r

1−r
r 1 − 1

r 0

0 − 1
r

2
r − 1

r

1−r
r 0 − 1

r 1

 , Î

(
−1

r

)
= {2, 3}, Î

(
1− r

r

)
= {1, 4} = {0, 1}.

Here we understand subscripts of Ai,j(0) with mod.4, i.e. A0,3(0) = A4,3(0). We picture 3 × 3 matrix

(Ai,j(0))
3
i,j=1 as nonstandard Dynkin diagram of A(1, 1). We picture 4 × 4 matrix (Ai,j(0))

3
i,j=0 as the

Dynkin diagram Φ̂ as follows.

Φ =

α1 α2 α3

α0 = α4

Φ̂ =
α1 α2 α3

− 1
r − 1

r

1−r
r

1−r
r

We have

D(0, 3;Φ) = 2r, D(1, 1;Φ) = r − 1, D(1, 2;Φ) = 2r − 2.

Theorem 3.1 Assume that conditions (5), (6), (7), (8) and (9) hold. Then, up to transformations (10),

(11) and (12), the parameters pi,j , qi,j, Ai,j(m), si(m), λi,j(m), gi, and the current Bj(m) are uniquely

determined as follows.

qj,j = xD(1,j−1;Φ), qj+1,j = x2r+D(1,j−1;Φ) (1 ≤ j ≤ L),

p1,1 =

 x2 if 1 ∈ Î
(
− 1

r

)
,

x2r−2 if 1 ∈ Î
(
1−r
r

)
,

pj,j = xD(1,j−2;Φ) ×

 xr+1 if j ∈ Î(− 1
r ),

x2r−1 if j ∈ Î( 1−r
r )

(2 ≤ j ≤ L),

pj,j−1 = xD(1,j−2;Φ) ×

 x2r−2 if j ∈ Î(− 1
r ),

x2 if j ∈ Î( 1−r
r )

(2 ≤ j ≤ L+ 1),

pk,l = qk,l (k ̸= l, l + 1, 1 ≤ k ≤ L+ 1, l ≤ l ≤ L). (17)

sj(m) = 1 (m > 0, 1 ≤ j ≤ L),

sj(−m) =


−1 if j ∈ Ĵ ,

− [m]x[2(r − 1)m]x
[rm]x[(r − 1)m]x

if j /∈ Ĵ , j ∈ Î(− 1
r ),

− [(r − 1)m]x[2m]x
[rm]x[m]x

if j /∈ Ĵ , j ∈ Î( 1−r
r )

(m > 0, 1 ≤ j ≤ L). (18)
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Ai,i(0) =


1 if j ∈ Ĵ ,
2

r
if i /∈ Ĵ , i ∈ Î(− 1

r ),

2(r − 1)

r
if i /∈ Ĵ , i ∈ Î( 1−r

r )

(1 ≤ i ≤ L+ 1),

Aj−1,j(0) = Aj,j−1(0) =


− 1

r
if j ∈ Î(− 1

r ),

1− r

r
if j ∈ Î( 1−r

r )
(1 ≤ j ≤ L+ 1),

Ak,l(0) = Al,k(0) = 0 (|k − l| ≥ 2, 1 ≤ k < l ≤ L or k = 0, l ̸= 0, 1, L). (19)

Aj,j(m) = 1 (m ̸= 0, 1 ≤ j ≤ L),

Ak,l(m) = 0 (m ̸= 0, |k − l| ≥ 2, 1 ≤ k, l ≤ L),

Aj−1,j(m) =
[m]x
[rm]x

×


1

sj(−m)
(m > 0),

1

sj−1(m)
(m < 0)

if j ∈ Î
(
− 1

r

)
,

Aj−1,j(m) =
[(r − 1)m]x

[rm]x
×


1

sj(−m)
(m > 0),

1

sj−1(m)
(m < 0)

if j ∈ Î
(
1−r
r

) (2 ≤ j ≤ L),

Aj−1,j(−m) = Aj,j−1(m), Aj,j−1(−m) = Aj−1,j(m) (m > 0, 2 ≤ j ≤ L). (20)

λi,j(0) =
2r log x

D(0, L; Φ)
×

 D(0, j − 1;Φ) if 1 ≤ j ≤ i− 1,

−D(j, L; Φ) if i ≤ j ≤ L
(1 ≤ i ≤ L+ 1). (21)

λi,j(m)

sj(m)
=

[rm]x(x− x−1)

[D(0, L; Φ)m]x
×

 −x(r+D(1,L;Φ))m[D(0, j − 1;Φ)m]x if 1 ≤ j ≤ i− 1,

x(r−D(0,0;Φ))m[D(j, L; Φ)m]x if i ≤ j ≤ L

(m ̸= 0, 1 ≤ i ≤ L+ 1). (22)

gi = g ×

 [r − 1]x if i ∈ Î(− 1
r ),

1 if i ∈ Î( 1−r
r )

(1 ≤ i ≤ L+ 1). (23)

Bj(z) = gj

(
qj,j
pj,j

− 1

)
: Λj(z)Sj(q

−1
j,j z) : (1 ≤ j ≤ L). (24)

Conversely, if the parameters are chosen as above then (5), (6), and (7) are satisfied.

Proposition 3.2 The Λi(z)’s satisfy the commutation relations

Λk(z1)Λl(z2) =
Θx2a

(
x2 z2

z1
, x−2r z2

z1
, x2r−2 z2

z1

)
Θx2a

(
x−2 z2

z1
, x2r z2

z1
, x−2r+2 z2

z1

)Λl(z2)Λk(z1) (1 ≤ k, l ≤ L+ 1) , (25)

where a = D(0, L; Φ). We understand (25) in the sense of analytic continuation.
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Proposition 3.3 The Sj(w)’s satisfy the commutation relations

Sj(w1)Sj(w2) = Sj(w2)Sj(w1)×



−1 if j ∈ Ĵ ,

−
(
w1

w2

) 2
r−1 Θx2r

(
x2w1

w2

)
Θx2r

(
x2w2

w1

) if j /∈ Ĵ , j ∈ Î(− 1
r ),

−
(
w1

w2

)1− 2
r Θx2r

(
x2w2

w1

)
Θx2r

(
x2w1

w2

) if j /∈ Ĵ , j ∈ Î( 1−r
r )

(1 ≤ j ≤ L),

Sj−1(w1)Sj(w2) = Sj(w2)Sj−1(w1)×



(
w1

w2

)− 1
r Θx2r

(
xr+1w2

w1

)
Θx2r

(
xr+1w1

w2

) if j ∈ Î(− 1
r ),

(
w1

w2

) 1
r−1 Θx2r

(
x2r−1w2

w1

)
Θx2r

(
x2r−1w1

w2

) if j ∈ Î( 1−r
r )

(2 ≤ j ≤ L),

Sk(w1)Sl(w2) = Sl(w2)Sk(w1) (|k − l| ≥ 2, 1 ≤ k, l ≤ L). (26)

We understand (26) in the sense of the analytic continuation.

In fact, the stronger relation

Sj(w1)Sj(w2) = (w1 − w2) : Sj(w1)Sj(w2) : (j ∈ Ĵ)

holds. This means that the screening currents Sj(w) (j ∈ Ĵ) are ordinary fermions.

3.2 Proof of Theorem 3.1

In this section we show Theorem 3.1 and Proposition 3.3.

Lemma 3.4 For Λi(z) and Sj(w), we obtain

φΛi,Sj (z, w) = e
∑L

k=1 λi,k(0)Ak,j(0) exp

(
L∑

k=1

∞∑
m=1

1

m
λi,k(m)Ak,j(m)sj(−m)

(w
z

)m)
, (27)

φSj ,Λi
(w, z) = exp

(
L∑

k=1

∞∑
m=1

1

m
sj(m)Aj,k(m)λi,k(−m)

( z

w

)m)
(1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L),(28)

φS̃k,S̃l
(w1, w2) = exp

( ∞∑
m=1

1

m
sk(m)Ak,l(m)sl(−m)

(
w2

w1

)m
)

(1 ≤ k, l ≤ L). (29)

Assume (5), we obtain

φΛk,Λl
(z1, z2) = exp

(
L∑

i=1

∞∑
m=1

1

m

λk,i(m)

si(m)
(q−m

l,i − p−m
l,i )

(
z2
z1

)m
)

(1 ≤ k, l ≤ L+ 1). (30)

Lemma 3.5 Mutual locality (5) holds if and only if (31) and (32) are satisfied

L∑
k=1

λi,k(0)Ak,j(0) = log

(
qi,j
pi,j

)
(1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L), (31)

L∑
k=1

λi,k(m)Ak,j(m)sj(−m) = qmi,j − pmi,j (m ̸= 0, 1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L). (32)
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Proof of Lemmas 3.4 and 3.5. Using the standard formula

eAeB = e[A,B]eBeA ([[A,B], A] = 0 and [[A,B], B] = 0),

we obtain (27), (28), (29), and

φΛk,Λl
(z1, z2) = exp

 L∑
i,j=1

∞∑
m=1

1

m
λk,i(m)Ai,j(m)λl,j(−m)

(
z2
z1

)m
 (1 ≤ k, l ≤ L+ 1). (33)

Considering (27), (28), and the expansions

w − p−1
i,j z

w − q−1
i,j z

= exp

(
log

(
qi,j
pi,j

)
−

∞∑
m=1

1

m
(pmi,j − qmi,j)

(w
z

)m)
(|z| ≫ |w|), (34)

w − p−1
i,j z

w − q−1
i,j z

= exp

(
−

∞∑
m=1

1

m
(p−m

i,j − q−m
i,j )

( z

w

)m)
(|w| ≫ |z|), (35)

we obtain (31) and (32) from (5). Substituting (32) for (33), we have (30).

Conversely, if we assume (31) and (32), we obtain (5) from (27), (28), (34), and (35). □
From linear equations (31) and (32), λi,j(m) are expressed in terms of the other parameters.

Lemma 3.6 We assume (5) and (8). The commutativity (6) holds if and only if (36), (37), (38), and

(39) are satisfied, where

pk,l = qk,l (k ̸= l, l + 1, 1 ≤ k ≤ L+ 1, 1 ≤ l ≤ L), (36)

q
1
2Ak,k(0)

k,k : Λk(z)Sk

(
q−1
k,kz

)
:= q

1
2Ak,k(0)

k+1,k : Λk+1(z)Sk

(
q−1
k+1,kz

)
: (1 ≤ k ≤ L), (37)

gk+1

gk
= −

(
qk+1,k

qk,k

) 1
2Ak,k(0)

qk,k

pk,k
− 1

qk+1,k

pk+1,k
− 1

(1 ≤ k ≤ L), (38)

Bk(z) = gk

(
qk,k
pk,k

− 1

)
: Λk(z)Sk(q

−1
k,kz) : (1 ≤ k ≤ L). (39)

Proof of Lemma 3.6. From (5), we obtain

[Λi(z), Sj(w)] =

(
qi,j
pi,j

− 1

)
δ
(qi,jw

z

)
: Λi(z)Sj(q

−1
i,j z) : (1 ≤ i ≤ L+ 1, 1 ≤ j ≤ L). (40)

Considering (8) and (40), we know that (6) holds if and only if (36) and

Bj(z) = gj

(
qj,j
pj,j

− 1

)
: Λj(z)Sj(q

−1
j,j z) := −gj+1

(
qj+1,j

pj+1,j
− 1

)
: Λj+1(z)Sj(q

−1
j+1,jz) : (1 ≤ j ≤ L) (41)

are satisfied. (41) holds if and only if (37), (38), and (39) are satisfied. Hence, we obtain this lemma. □
We use the abbreviation hk,l(w) (1 ≤ k, l ≤ L),

hk,l

(
w2

w1

)
= φS̃k,S̃l

(w1, w2). (42)

Lemma 3.7 We assume (5) and (37). Then, hk,l(w) in (42) satisfy the q-difference equations

w − p−1
k,k

w − q−1
k,k

hk,k

(
q−1
k,kw

)
=

w − p−1
k+1,k

w − q−1
k+1,k

hk,k

(
q−1
k+1,kw

)
,(

qk+1,k

qk,k

)Ak,k(0)−1
pk+1,k

pk,k

1− pk,kw

1− qk,kw
hk,k (qk,kw) =

1− pk+1,kw

1− qk+1,kw
hk,k (qk+1,kw)

(1 ≤ k ≤ L),(43)
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and

hk,k+1(qk,kw)

hk,k+1(qk+1,kw)
=

qk+1,k+1

pk+1,k+1

(
qk,k

qk+1,k

)Ak,k+1(0) 1− pk+1,k+1w

1− qk+1,k+1w
,

hk,k+1

(
q−1
k+1,k+1w

)
hk,k+1

(
q−1
k+2,k+1w

) =
1− q−1

k+1,kw

1− p−1
k+1,kw

,

hk+1,k(qk+2,k+1w)

hk+1,k(qk+1,k+1w)
=

qk+1,k

pk+1,k

(
qk+2,k+1

qk+1,k+1

)Ak,k+1(0) 1− pk+1,kw

1− qk+1,kw
,

hk+1,k

(
q−1
k,kw

)
hk+1,k

(
q−1
k+1,kw

) =
1− p−1

k+1,k+1w

1− q−1
k+1,k+1w

(1 ≤ k ≤ L− 1). (44)

Proof of Lemma 3.7. Multiplying (37) by the screening currents on the left or right and considering the

normal orderings, we obtain (43) and (44) as necessary conditions. □

Lemma 3.8 The relations (45) and (46) hold if (5), (7), (9), and (37) are satisfied, where

qk+1,k+1 = qk,kx
(1+Ak,k+1(0))r,

qk+1,k = qk,kx
2r,

pk+1,k+1 = qk,kx
(1−Ak,k+1(0))r,

pk+1,k = qk,kx
2(1+Ak,k+1(0))r

(1 ≤ k ≤ L− 1). (45)

pk,k = qk,kx
Ak,k(0)r,

pk+1,k = qk,kx
(2−Ak,k(0))r

if k /∈ Ĵ ,

pk+1,k = pk,k if k ∈ Ĵ

(1 ≤ k ≤ L). (46)

Lemma 3.9 The relation (47) holds, if (5), (7), (9), and (37) are satisfied.

sk(m)sk(−m) =


−1 if k ∈ Ĵ ,

−
[ 12Ak,k(0)rm]x[(2−Ak,k(0))rm]x

[ 12 (2−Ak,k(0))rm]x[rm]x
if k /∈ Ĵ

(m > 0, 1 ≤ k ≤ L),

sk(m)Ak,k+1(m)sk+1(−m) = − [Ak,k+1(0)rm]x
[rm]x

,

sk+1(m)Ak+1,k(m)sk(−m) = − [Ak+1,k(0)rm]x
[rm]x

(m > 0, 1 ≤ k ≤ L− 1),

Ak,l(m) = 0 (m > 0, |k − l| ≥ 2, 1 ≤ k, l ≤ L). (47)

Proof of Lemmas 3.8 and 3.9. From Lemma 3.7, we obtain the q-difference equations (43) and (44).

From (29) and (42), the constant term of hk,l(w) is 1. Comparing the Taylor expansions for both sides

of (43) and (44), we obtain

pk+1,k

pk,k

(
qk+1,k

qk,k

)Ak,k(0)−1

= 1 (1 ≤ k ≤ L), (48)

qk+1,k+1

pk+1,k+1

(
qk,k

qk+1,k

)Ak,k+1(0)

= 1,
qk+1,k

pk+1,k

(
qk+2,k+1

qk+1,k+1

)Ak,k+1(0)

= 1 (1 ≤ k ≤ L− 1). (49)

First, we study the q-difference equations in (44). Upon the specialization (49), we obtain solutions

15



of (44) as

hk,k+1(w) = exp

−
∞∑

m=1

1

m

(
pk+1,k+1

qk,k

)m
−
(

qk+1,k+1

qk,k

)m
1−

(
qk+1,k

qk,k

)m wm


= exp

−
∞∑

m=1

1

m

(
qk+2,k+1

pk+1,k

)m
−
(

qk+2,k+1

qk+1,k

)m
1−

(
qk+2,k+1

qk+1,k+1

)m wm

 , (50)

hk+1,k(w) = exp

−
∞∑

m=1

1

m

(
qk+1,k

qk+1,k+1

)m
−
(

pk+1,k

qk+1,k+1

)m
1−

(
qk+2,k+1

qk+1,k+1

)m wm


= exp

−
∞∑

m=1

1

m

(
qk+1,k

qk+1,k+1

)m
−
(

qk+1,k

pk+1,k+1

)m
1−

(
qk+1,k

qk,k

)m wm

 . (51)

Here we used |qk+1,k/qk,k| ̸= 1 (1 ≤ k ≤ L) assumed in (9). From the compatibility of the two formulae

for hk,k+1(w) in (50)
(
or hk+1,k(w) in (51)

)
, there are two possible restrictions for qk,k, qk+1,k+1, qk+1,k,

and qk+2,k+1,

(i)
qk+1,k

qk,k
=

qk+2,k+1

qk+1,k+1
or (ii)

qk+1,k

qk,k
=

qk+1,k+1

qk+2,k+1
. (52)

First, we consider case (ii) qk+1,k/qk,k = qk+1,k+1/qk+2,k+1 in (52). From the compatibility of the

two formulae for hk,k+1(w) in (50)
(
and hk+1,k(w) in (51)

)
, we obtain(

pk+1,k+1

qk,k

)m

+

(
qk+1,k+1

pk+1,k

)m

=

(
qk+1,k+1

qk+1,k

)m

+

(
qk+1,k+1

qk,k

)m

(m ̸= 0). (53)

From (53) for m = 1, 2, we obtain pk+1,k+1/pk+1,k = qk+1,k+1/qk+1,k. Combining (53) for m = 1 and

pk+1,k+1/pk+1,k = qk+1,k+1/qk+1,k, we obtain qk,k = pk+1,k or qk+1,k+1 = pk+1,k+1. For the case of

qk,k = pk+1,k, we obtain Ak,k+1(0) = 1 from (49). For the case of qk+1,k+1 = pk+1,k+1, we obtain

Ak,k+1(0) = 0 from (49). Ak,k+1(0) = 0 and Ak,k+1(0) = 1 contradict with −1 < Ak,k+1(0) < 0 assumed

in (9). Hence, case (ii) qk+1,k/qk,k = qk+1,k+1/qk+2,k+1 is impossible.

Next, we consider case (i) qk+1,k/qk,k = qk+2,k+1/qk+1,k+1 in (52). From exclusion of case (ii) and

the parametrization (15), we can parametrize

q2,1
q1,1

=
q3,2
q2,2

= · · · = qL+1,L

qL,L
= x2r. (54)

From the compatibility of the two formulae for hk,k+1(w) in (50)
(
and hk+1,k(w) in (51)

)
, we obtain

hk,k+1(w) = exp

(
−

∞∑
m=1

1

m

[Ak,k+1(0)rm]x
[rm]x

x−(Ak,k+1(0)+1)rm

(
qk+1,k+1

qk,k

)m

wm

)
, (55)

hk+1,k(w) = exp

(
−

∞∑
m=1

1

m

[Ak,k+1(0)rm]x
[rm]x

x(Ak,k+1(0)+1)rm

(
qk,k

qk+1,k+1

)m

wm

)
. (56)

We used (49) and (54). From hk,k+1(w) = hk+1,k(w) assumed in (7), we obtain

qk+1,k+1

qk,k
= x(Ak,k+1(0)+1)r. (57)
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Considering (49), (54), and (57), we obtain (45). From (55), (56), and (57), we obtain

hk,k+1(w) = hk+1,k(w) = exp

(
−

∞∑
m=1

1

m

[Ak,k+1(0)rm]x
[rm]x

wm

)
. (58)

Considering (29), (42), and (58), we obtain the second half of (47).

Next, we study the q-difference equations in (43). Upon the specialization (48), the compatibility

condition of the equations in (43) is

(pk,k − pk+1,k)(pk,kpk+1,k − qk,kqk+1,k) = 0 (1 ≤ k ≤ L). (59)

First, we study the case of Ak,k(0) = 1. We obtain pk,k = pk+1,k in the second half of (46) from

(48). Solving (43) upon pk,k = pk+1,k, we obtain hk,k(w) = 1− w. Considering (29) and (42), we obtain

sk(m)sk(−m) = −1 (m > 0) in the first half of (47).

Next, we study the case of Ak,k(0) ̸= 1. We obtain pk,k ̸= pk+1,k from (9) and (48). Then, we obtain

pk,kpk+1,k = qk,kqk+1,k from (59). Combining pk,kpk+1,k = qk,kqk+1,k and (48), we obtain (46). Solving

(43), we obtain

hk,k(w) = exp

(
−

∞∑
m=1

1

m

[
1
2Ak,k(0)rm

]
x
[(2−Ak,k(0))rm]x[

1
2 (2−Ak,k(0))rm

]
x
[rm]x

wm

)
.

We used |qk+1,k/qk,k| ̸= 1 (1 ≤ k ≤ L) in (9) and qk+1,k/qk,k = x2r (1 ≤ k ≤ L) in (54). Considering

(29) and (42), we obtain the first half of (47). □

Lemma 3.10 The relation (14) holds for (Ai,j(0))
L
i,j=0 if (5), (6), (7), (8), and (9) are satisfied.

Proof of Lemma 3.10. We obtain Ak,l(0) (|k − l| ≥ 2, 1 ≤ k, l ≤ L) from (7). From Lemma 3.6, we have

(37). From Lemma 3.8, we have (45) and (46). From the compatibility of (45) and (46), we obtain the

following relations for (Ai,j(0))
L
i,j=1.

Ak+1,k(0) =

 Ak−1,k(0) if k /∈ Ĵ ,

−1−Ak−1,k(0) if k ∈ Ĵ
(2 ≤ k ≤ L− 1),

Ak,k(0) =

 −2Ak−1,k(0) if k /∈ Ĵ ,

1 if k ∈ Ĵ
(2 ≤ k ≤ L), A1,1(0) =

 −2A1,2(0) if 1 /∈ Ĵ ,

1 if 1 ∈ Ĵ ,

Ak,l(0) = 0 (|k − l| ≥ 2, 1 ≤ k, l ≤ L). (60)

Solving these equations, we obtain (14) for 1 ≤ i ≤ L, 2 ≤ j ≤ L, and 1 ≤ k, l ≤ L. The extension to

(Ai,j(0))
L
i,j=0 is direct consequence of the definition (13). □

Proposition 3.11 The relations (5), (6), and (7) hold if the parameters pi,j , qi,j, Ai,j(m), si(m), gi,

and λi,j(m) are determined by (19), (31), (32), (36), (38), (45), (46), and (47).

Proof of Proposition 3.11. First, we will show the formulae (17), (18), (20), (21), (22), and (23) in
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Theorem 3.1. Let q1,1 = s. From (19), (36), (45), and (46), we have

qj,j = sxD(1,j−1;Φ), qj+1,j = sx2r+D(1,j−1;Φ) (1 ≤ j ≤ L),

p1,1 = s×

 x2 if 1 ∈ Î
(
− 1

r

)
,

x2r−2 if 1 ∈ Î
(
1−r
r

) , pj,j = sxD(1,j−2;Φ) ×

 xr+1 if j ∈ Î(− 1
r ),

x2r−1 if j ∈ Î( 1−r
r )

(2 ≤ j ≤ L),

pj,j−1 = sxD(1,j−2;Φ) ×

 x2r−2 if j ∈ Î(− 1
r ),

x2 if j ∈ Î( 1−r
r )

(2 ≤ j ≤ L+ 1),

pk,l = qk,l (k ̸= l, l + 1, 1 ≤ k ≤ L+ 1, l ≤ l ≤ L).

Upon the specialization s = 1, we have (17). From (17), (19), and (38), we have (23). From (47) we have

sk(−m) = − 1

αk(m)
×


1 if k ∈ Ĵ ,

[ 12Ak,k(0)rm]x[(2−Ak,k(0))rm]x

[ 12 (2−Ak,k(0))rm]x[rm]x
if k /∈ Ĵ

(m > 0),

Ak±1,k(m) =
αk(m)

αk±1(m)

[Ak±1,k(0)rm]x
[rm]x

×


1 if k ∈ Ĵ ,

[rm]x[
1
2 (2−Ak,k(0))rm]x

[ 12Ak,k(0)rm]x[(2−Ak,k(0))rm]x
if k /∈ Ĵ

(m > 0),

Ak,k±1(−m) = Ak±1,k(m) (m > 0).

Here the signs of the formulae are in the same order. Here we set sk(m) = αk(m) (m > 0, 1 ≤ k ≤ L).

Setting αk(m) = 1 (m > 0, 1 ≤ k ≤ L) provides (18) and (20). Solving (31) and (32), we obtain λi,j(m)

in (21) and (22). Solving (31) and (32) for arbitrary αk(m), we obtain λi,j(m)αj(m). Now we obtained

the formulae (17), (18), (20), (21), (22), and (23). As a by-product of calculation, we proved that there

is no indeterminacy in the free field realization except for (10), (11), and (12), which is part of Theorem

3.1.

Next, we will derive (5), (6), and (7). From (18) and (20) we obtain the symmetry (7) by direct

calculation. Because λi,j(m) are determined by (31) and (32), the mutual locality (5) holds from Lemma

3.5. From (18) and (22), we have (37) by direct calculation. From (5), (36), (37), and (38), we obtain

[T1(z), Sj(w)] =
(

qj,j
pj,j

− 1
)

: Λj(z)Sj(q
−1
j,j z) :

(
δ
( qj,jw

z

)
− δ

( qj+1,jw
z

))
(1 ≤ j ≤ L). Hence, we have

commutativity (6) upon the condition (24). We derived (5), (6), and (7). □

Proof of Theorem 3.1. We assume the relations (5), (6), (7), (8), and (9). From Lemmas 3.5, 3.6, 3.8,

3.9, and 3.10, we obtain the relations (19), (31), (32), (36), (38), (45), (46), and (47). In the proof of

Proposition 3.11, we have obtained pi,j , qi,j , sj(m), Ai,j(m), gi, λi,j(m), and Bj(z) in (17), (18), (20),

(21), (22), (23), and (24) from the relations (19), (31), (32), (36), (38), (45), (46), and (47). Moreover, in

the proof of Proposition 3.11, we have proved that there is no indeterminacy in the free field realization

except for (10), (11), and (12).

Conversely, in the proof of Proposition 3.11, we have proved that the relations (5), (6), and (7) hold,

if the relations (17), (18), (19), (20), (21), (22), (23), and (24) are satisfied. □
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Proof of Proposition 3.3. Using hk,l(w) in (42) we obtain

Sk(w1)Sl(w2) =

(
w1

w2

)Ak,l(0) hk,l

(
w2

w1

)
hl,k

(
w1

w2

)Sl(w2)Sk(w1) (1 ≤ k, l ≤ L).

Using (18), (19) and (20) we obtain (26). □

By direct calculation, we have the following lemma.

Lemma 3.12 The determinants of (Ai,j(m))Li,j=1 in (19) and (20) are given by

det
(
(Ai,j(m))

L
i,j=1

)
= (−1)L

[D(0, L; Φ)m]x[(r − 1)m]
|Î( 1−r

r )|−1
x [m]

|Î(− 1
r )|−1

x

[rm]Lx

L∏
j=1

sj(m)sj(−m)

(m ̸= 0),

det
(
(Ai,j(0))

L
i,j=1

)
= r−L(r − 1)|Î(

1−r
r )|−1D(0, L; Φ).

Hence, the condition det
(
(Ai,j(m))

L
i,j=1

)
̸= 0 (m ∈ Z) is satisfied.

4 Quadratic relations

In this section we introduce the higher W -currents Ti(z) and obtain a set of quadratic relations of Ti(z)

for the deformed W -superalgebra Wq,t

(
A(M,N)

)
. We show that these relations are independent of the

choice of Dynkin diagrams.

4.1 Quadratic relations

We define the functions ∆i(z) (i = 0, 1, 2, . . .) as

∆i(z) =
(1− x2r−iz)(1− x−2r+iz)

(1− xiz)(1− x−iz)
.

We have

∆i(z)−∆i(z
−1) =

[r]x[r − i]x
[i]x

(x− x−1)(δ(x−iz)− δ(xiz)) (i = 1, 2, 3, . . .).

We define the structure functions fi,j(z; a) (i, j = 0, 1, 2, . . .) as

fi,j(z; a) = exp

(
−

∞∑
m=1

1

m

[(r − 1)m]x[rm]x[Min(i, j)m]x[(a−Max(i, j))m]x
[m]x[am]x

(x− x−1)2zm

)
. (61)

In the case of a = D(0, L; Φ), the ratio of the structure function

f1,1(z
−1; a)

f1,1(z; a)
=

Θx2a(x2z, x−2rz, x2r−2z)

Θx2a(x−2z, x2rz, x−2r+2z)

coincides with those of (25).
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We introduce the higher W -currents Ti(z) and give the quadratic relations. From now on, we set

g = 1 in (23), but this is not an essential limitation. Hereafter, we use the abbreviations

c(r, x) = [r]x[r − 1]x(x− x−1), dj(r, x) =


j∏

l=1

[r − l]x
[l]x

(j ≥ 1),

1 (j = 0).

We introduce the W -currents Ti(z) (i = 0, 1, 2, . . .) as

T0(z) = 1, T1(z) =
∑

k∈Î( 1−r
r )

Λk(z) + d1(r, x)
∑

k∈Î(− 1
r )

Λk(z),

Ti(z) =
∑

(m1,m2,...,mL+1)∈N̂(Φ)

m1+m2+···+mL+1=i

∏
k∈Î(− 1

r )

dmk
(r, x) Λ(i)

m1,m2,...,mL+1
(z) (i = 2, 3, 4, . . .). (62)

Here we set

Λ
(i)
m1,m2,··· ,mL+1(z) =:

∏
k∈Î( 1−r

r )

Λ
(mk)
k (x−i+1+2(m1+···+mk−1)z)

×
∏

k∈Î(− 1
r )

Λ
(mk)
k (x−i+1+2(m1+···+mk−1)z) : for (m1,m2, . . . ,mL+1) ∈ N̂(Φ),

where

Λ
(0)
k (z) = 1, Λ

(m)
k (z) =: Λk(z)Λk(x

2z) · · ·Λk(x
2m−2z) :,

N̂(Φ) =

{
(m1,m2, . . . ,mL+1) ∈ NL+1

∣∣∣∣0 ≤ mk ≤ 1 if k ∈ Î

(
1− r

r

)
, mk ≥ 0 if k ∈ Î

(
−1

r

)}
.

(63)

We have Ti(z) ̸= 1 (i = 1, 2, 3, . . .) and Ti(z) ̸= Tj(z) (i ̸= j).

The following is the main theorem of this paper.

Theorem 4.1 For the deformed W -superalgebra Wq,t

(
A(M,N)

)
the W -currents Ti(z) satisfy the set

of quadratic relations

fi,j

(
z2
z1

; a

)
Ti(z1)Tj(z2)− fj,i

(
z1
z2

; a

)
Tj(z2)Ti(z1)

= c(r, x)

i∑
k=1

k−1∏
l=1

∆1(x
2l+1)

(
δ

(
x−j+i−2kz2

z1

)
fi−k,j+k(x

j−i; a)Ti−k(x
kz1)Tj+k(x

−kz2)

− δ

(
xj−i+2kz2

z1

)
fi−k,j+k(x

−j+i; a)Ti−k(x
−kz1)Tj+k(x

kz2)

)
(j ≥ i ≥ 1). (64)

Here we use fi,j(z; a) in (61) with the specialization a = D(0, L; Φ). The quadratic relations (64) are

independent of the choice of Dynkin diagrams for the Lie superalgebra A(M,N).

In view of Theorem 4.1, we arrive at the following definition.

Definition 4.2 Set T i(z) =
∑

m∈Z T i[m]z−m (i = 1, 2, 3, . . .). The deformed W -superalgebra Wq,t

(
A(M,N)

)
is the associative algebra over C with the generators T i[m] (m ∈ Z, i = 1, 2, 3, . . .) and defining relations

(64).
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As a merit of this definition it becomes clear that Wq,t

(
A(M,N)

)
is independent of the choice of

Dynkin diagrams. In Section 5 we discuss about justification of this definition. We compare Definition

4.2 with the other definitions of the deformed W -superalgebra of type A(M,N), that are based on the

Miura transformation or the screening operators.

4.2 Proof of Theorem 4.1

Proposition 4.3 The Λi(z)’s satisfy

f1,1

(
z2
z1

; a

)
Λk(z1)Λl(z2) = ∆1

(
x−1z2
z1

)
: Λk(z1)Λl(z2) :,

f1,1

(
z2
z1

; a

)
Λl(z1)Λk(z2) = ∆1

(
xz2
z1

)
: Λl(z1)Λk(z2) : (1 ≤ k < l ≤ L+ 1),

f1,1

(
z2
z1

; a

)
Λi(z1)Λi(z2) =: Λi(z1)Λi(z2) : if i ∈ Î

(
1− r

r

)
,

f1,1

(
z2
z1

; a

)
Λi(z1)Λi(z2) = ∆2

(
z2
z1

)
: Λi(z1)Λi(z2) : if i ∈ Î

(
−1

r

)
, (65)

where we set a = D(0, L; Φ).

Proof of Proposition 4.3. Substituting (17) and (22) into φΛk,Λl
(z1, z2) in (30), we obtain (65). □

Proof of Proposition 3.2. Using φΛk,Λl
(z1, z2) in (30), we obtain

Λk(z1)Λl(z2) =
φΛk,Λl

(z1, z2)

φΛl,Λk
(z2, z1)

Λl(z2)Λk(z1) (1 ≤ k, l ≤ L+ 1).

Using the explicit formulae of φΛk,Λl
(z1, z2), we obtain (25). □

Lemma 4.4 The D(0, L; Φ) given in (16) is independent of the choice of the Dynkin diagrams for the

Lie superalgebra A(M,N).

D(0, L; Φ) = D(0, L; rαi(Φ)) (αi ∈ Π). (66)

Here Π is a fundamental system.

Proof of Lemma 4.4. We show (66) by checking all cases. We set the Dynkin diagrams Φj (1 ≤ j ≤ 8)

as follows. Let K = K(Φj) the number of odd isotropic roots (αi, αi) = 0 in the Dynkin diagram Φj .

We set

· · · · · ·

α1 α2

Φ1 = · · · · · ·
α1 α2

Φ2 =

· · · · · ·Φ3 =

αL−1 αL

· · · · · ·Φ4 =

αL−1 αL

For 2 ≤ i ≤ L− 1, we set
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Φ5 = · · · · · ·

αi−1 αi αi+1

· · · · · ·

Φ6 = · · · · · ·

αi−1 αi αi+1

· · · · · ·

Φ7 = · · · · · ·

αi−1 αi αi+1

· · · · · ·

Φ8 = · · · · · ·

αi−1 αi αi+1

· · · · · ·

We have rα1
(Φ1) = Φ2, rαL

(Φ3) = Φ4, rαi
(Φ5) = Φ6, and rαi

(Φ7) = Φ8.

The affinized Dynkin diagrams Φ̂j from Φj (1 ≤ j ≤ 8) are given as Φ̂j =

 Φ̂j,1 if K(Φj) = even,

Φ̂j,2 if K(Φj) = odd.

· · · · · ·

· · · · · ·

Φ̂1,1 =

α1 α2

α0 = αL+1

δ δ

−1− δ −1− δ

· · · · · ·

· · · · · ·

Φ̂1,2 =

α1 α2

α0 = αL+1

δ δ

−1− δ δ

· · · · · ·

· · · · · ·

Φ̂2,1 =

α1 α2

α0 = αL+1

−1− δ δ

δ δ

· · · · · ·

· · · · · ·

Φ̂2,2 =

α1 α2

α0 = αL+1

−1− δ δ

δ −1− δ

· · · · · ·

· · · · · ·

Φ̂3,1 =

αL−1 αL

α0 = αL+1

δ δ

−1− δ−1− δ

· · · · · ·

· · · · · ·

Φ̂3,2 =

αL−1 αL

α0 = αL+1

δ δ

−1− δδ

· · · · · ·

· · · · · ·

Φ̂4,1 =

αL−1 αL

α0 = αL+1

δ −1− δ

δδ

· · · · · ·

· · · · · ·

Φ̂4,2 =

αL−1 αL

α0 = αL+1

δ −1− δ

δ−1− δ

· · · · · ·· · · · · ·Φ̂5,1 =

· · ·

α0 = αL+1
δ δ −1− δ −1− δ

αi−1 αi αi+1
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· · · · · ·· · · · · ·Φ̂5,2 =

· · ·

α0 = αL+1
δ δ −1− δ −1− δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂6,1 =

· · ·

α0 = αL+1
δ −1− δ δ −1− δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂6,2 =

· · ·

α0 = αL+1
δ −1− δ δ −1− δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂7,1 =

· · ·

α0 = αL+1
δ −1− δ δ δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂7,2 =

· · ·

α0 = αL+1
δ −1− δ δ δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂8,1 =

· · ·

α0 = αL+1
δ δ −1− δ δ

αi−1 αi αi+1

· · · · · ·· · · · · ·Φ̂8,2 =

· · ·

α0 = αL+1
δ δ −1− δ δ

αi−1 αi αi+1

The values of Aj−1,j(0) are written beside the line segment connecting αj−1 and αj . We have

|Î(1, L+1; δ, Φ̂2j−1,1)| = |Î(1, L+1; δ, Φ̂2j,2)|, |Î(1, L+1; δ, Φ̂2j−1,2)| = |Î(1, L+1; δ, Φ̂2j,1)| (1 ≤ j ≤ 2),

|Î(1, L+1; δ, Φ̂2j−1,1)| = |Î(1, L+1; δ, Φ̂2j,1)|, |Î(1, L+1; δ, Φ̂2j−1,2)| = |Î(1, L+1; δ, Φ̂2j,2)| (3 ≤ j ≤ 4),

where δ = 1−r
r or − 1

r . Hence we have

D(0, L; Φ2j−1) = D(0, L; Φ2j) (1 ≤ j ≤ 4).

In other words, we have

D(0, L; Φj) = D(0, L; rα1
(Φj)) (1 ≤ j ≤ 2),

D(0, L; Φj) = D(0, L; rαL
(Φj)) (3 ≤ j ≤ 4),

D(0, L; Φj) = D(0, L; rαi
(Φj)) (5 ≤ j ≤ 8, 2 ≤ i ≤ L− 1).

Now we have proved (66). □
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Lemma 4.5 ∆i(z) and fi,j(z; a) satisfy the following fusion relations.

fi,j(z; a) = fj,i(z; a) =

i∏
k=1

f1,j(z
−i−1+2kz; a) (1 ≤ i ≤ j), (67)

f1,i(z; a) =

(
i−1∏
k=1

∆1(x
−i+2kz)

)−1 i∏
k=1

f1,1(x
−i−1+2kz; a) (i ≥ 2), (68)

f1,i(z; a)fj,i(x
±(j+1)z; a) =

 fj+1,i(x
±jz; a)∆1(x

±iz) (1 ≤ i ≤ j),

fj+1,i(x
±jz; a) (1 ≤ j < i),

(69)

f1,i(z; a)f1,j(x
±(i+j)z; a) = f1,i+j(x

±jz; a)∆1(x
±iz) (i, j ≥ 1), (70)

f1,i(z; a)f1,j(x
±(i−j−2k)z; a) = f1,i−k(x

∓kz; a)f1,j+k(x
±(i−j−k)z; a) (i, j, i− k, j + k ≥ 1), (71)

∆i+1(z) =

(
i−1∏
k=1

∆1(x
−i+2kz)

)−1 i∏
k=1

∆2(x
−i−1+2kz) (i ≥ 2). (72)

Proof of Lemma 4.5. We obtain (67) and (72) by straightforward calculation from the definitions. We

show (68) here. From definitions, we have(
i−1∏
k=1

∆1(x
−i+2kz)

)−1 i∏
k=1

f1,1(x
−i−1+2kz; a)

= exp

(
−

∞∑
m=1

1

m

[rm]x[(r − 1)m]x
[am]x

(x− x−1)2

×

(
[(a− 1)m]x

i∑
k=1

x(−i+2k−1)m − [am]x

i−1∑
k=1

x(−i+2k)m

)
zm

)
.

Using the relation

[(a− 1)m]x

i∑
k=1

x(−i+2k−1)m − [am]x

i−1∑
k=1

x(−i+2k)m = [(a− i)m]x,

we have f1,i(z; a). Using (67) and (68), we obtain the relations (69), (70), and (71). □
The following relations (73), (74), and (75) give special cases of (64).

Lemma 4.6 The Ti(z)’s satisfy the fusion relation

lim
z1→x±(i+j)z2

(
1− x±(i+j) z2

z1

)
fi,j

(
z2
z1

; a

)
Ti(z1)Tj(z2)

= ∓c(r, x)

Min(i,j)−1∏
k=1

∆1(x
2k+1)Ti+j(x

±iz2) (i, j ≥ 1). (73)

Here we set a = D(0, L; Φ).

Proof of Lemma 4.6. Summing up the relations (A 1)–(A 4) in Appendix A gives (73). □

Lemma 4.7 The Ti(z)’s satisfy the exchange relation as meromorphic functions

fi,j

(
z2
z1

; a

)
Ti(z1)Tj(z2) = fj,i

(
z1
z2

; a

)
Tj(z2)Ti(z1) (j ≥ i ≥ 1). (74)

Here we set a = D(0, L; Φ).
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Proof of Lemma 4.7. Using the commutation relation (65) repeatedly, (74) is obtained except for poles

in both sides. □

Lemma 4.8 The Ti(z)’s satisfy the quadratic relations

f1,i

(
z2
z1

; a

)
T1(z1)Ti(z2)− fi,1

(
z1
z2

; a

)
Ti(z2)T1(z1)

= c(r, x)

(
δ

(
x−i−1z2

z1

)
Ti+1(x

−1z2)− δ

(
xi+1z2
z1

)
Ti+1(xz2)

)
(i ≥ 1). (75)

Here we set a = D(0, L; Φ).

Proof of Lemma 4.8. Summing up the relations (B 2)–(B 6) in Appendix B gives (75). □

Proof of Theorem 4.1. We prove Theorem 4.1 by induction. Lemma 4.8 is the basis of induction for the

proof. In what follows we set a = D(0, L; Φ).

We define LHSi,j and RHSi,j(k) with (1 ≤ k ≤ i ≤ j) as

LHSi,j = fi,j

(
z2
z1

; a

)
Ti(z1)Tj(z2)− fj,i

(
z1
z2

; a

)
Tj(z2)Ti(z1),

RHSi,j(k) = c(r, x)

k−1∏
l=1

∆1(x
2l+1)

(
δ

(
x−j+i−2kz2

z1

)
fi−k,j+k(x

j−i; a)Ti−k(x
kz1)Tj+k(x

−kz2)

− δ

(
xj−i+2kz2

z1

)
fi−k,j+k(x

−j+i; a)Ti−k(x
−kz1)Tj+k(x

kz2)

)
(1 ≤ k ≤ i− 1),

RHSi,j(i) = c(r, x)

i−1∏
l=1

∆1(x
2l+1)

(
δ

(
x−j−iz2

z1

)
Tj+i(x

−iz2)− δ

(
xj+iz2
z1

)
Tj+i(x

iz2)

)
.

We prove the following relation by induction on i (1 ≤ i ≤ j).

LHSi,j =

i∑
k=1

RHSi,j(k). (76)

The starting point of i = 1 ≤ j was previously proven in Lemma 4.8. We assume that the relation

(76) holds for some i (1 ≤ i < j), and we show LHSi+1,j =
∑i+1

k=1 RHSi+1,j(k) from this assumption.

Multiplying LHSi,j by f1,i (z1/z3; a) f1,j (z2/z3; a)T1(z3) on the left and using the quadratic relation (76)

with i = 1 along with fusion relation (69) gives

f1,j

(
z2
z3

; a

)
fi,j

(
z2
z1

; a

)
f1,i

(
z1
z3

; a

)
T1(z3)Ti(z1)Tj(z2)

−fj,1

(
z3
z2

; a

)
fj,i

(
z1
z2

; a

)
Tj(z2)f1,i

(
z1
z3

; a

)
T1(z3)Ti(z1)

− c(r, x)δ

(
x−j−1z2

z3

)
∆1

(
x−iz1
z3

)
fj+1,i

(
x−jz1
z3

; a

)
Tj+1(x

jz3)Ti(z1)

+ c(r, x)δ

(
xj+1z2

z3

)
∆1

(
xiz1
z3

)
fj+1,i

(
xjz1
z3

; a

)
Tj+1(x

−jz3)Ti(z1). (77)
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Taking the limit z3 → x−i−1z1 of (77) multiplied by c(r, x)−1
(
1− x−i−1z1/z3

)
and using fusion relation

(73) along with the relation limz3→x−i−1z1

(
1− x−i−1z1/z3

)
∆1

(
x−iz1/z3

)
= c(r, x) gives

f1,j

(
xi+1z2
z1

; a

)
fi,j

(
z2
z1

; a

)
Ti+1(x

−1z1)Tj(z2)−

fj,1

(
x−i−1z1

z2
; a

)
fj,i

(
z1
z2

; a

)
Tj(z2)Ti+1(x

−1z1)

− c(r, x)δ

(
xi−jz2
z1

)
fj+1,i(x

i−j+1; a)Tj+1(x
j−i−1z1)Ti(z1)

+ c(r, x)δ

(
xi+j+2z2

z1

) i∏
l=1

∆1(x
2l+1)Ti+j+1(x

i+1z2).

Using fusion relation (69) and

fj+1,i(x
i−j+1; a)Tj+1(x

j−i−1z1)Ti(z1) = fi,j+1(x
j−i−1; a)Ti(z1)Tj+1(x

j−i−1z1)

in (76) with j → j + 1 gives

fi+1,j

(
xz2
z1

; a

)
Ti+1(x

−1z1)Tj(z2)− fj,i+1

(
x−1z1
z2

; a

)
Tj(z2)Ti+1(x

−1z1)

− c(r, x)δ

(
xi−jz2
z1

)
fi,j+1(x

−i+j+1; a)Ti(z1)Tj+1(x
−1z2)

+ c(r, x)δ

(
xi+j+2z2

z1

) i∏
l=1

∆1(x
2l+1)Ti+j+1(x

i+1z2). (78)

Multiplying RHSi,j(i) by f1,i (z1/z3; a) f1,j (z2/z3; a)T1(z3) from the left and using fusion relation (70)

gives

c(r, x)

i−1∏
l=1

∆1(x
2l+1)

(
δ

(
x−i−jz2

z1

)
f1,i+1

(
xjz1
z3

; a

)
∆1

(
xiz1
z3

)
T1(z3)Ti+j(x

jz1)

− δ

(
xi+jz2
z1

)
f1,i+1

(
x−jz1
z3

; a

)
∆1

(
x−iz1
z3

)
T1(z3)Ti+j(x

−jz1)

)
. (79)

Taking the limit z3 → x−i−1z1 of (79) multiplied by c(r, x)−1
(
1− x−i−1z1/z3

)
and using fusion relation

(73) along with the relation limz3→x−i−1z1

(
1− x−i−1z1/z3

)
∆1

(
x−iz1/z3

)
= c(r, x) gives

c(r, x)δ

(
x−i−jz2

z1

) i∏
l=1

∆1(x
2l+1)Ti+j+1(x

−i−1z2)

− c(r, x)δ

(
xi+jz2
z1

) i−1∏
l=1

∆1(x
2l+1)f1,i+j(x

i−j+1; a)T1(x
−i−1z1)Ti+j(x

iz2). (80)

Multiplying RHSi,j(k) (1 ≤ k ≤ i−1) by f1,i (z1/z3; a) f1,j (z2/z3; a)T1(z3) from the left and using fusion

relation (71) along with

fi−k,j+k(x
j−i; a)Ti−k(x

kz1)Tj+k(x
j−i+kz1) = fj+k,i−k(x

i−j ; a)Tj+k(x
j−i+kz1)Ti−k(x

kz1)
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in (76) with j → j + k gives

c(r, x)

k−1∏
l=1

∆1(x
2l+1) (81)

×
(
δ

(
x−j+i−2kz2

z1

)
f1,i−k

(
xkz1
z3

; a

)
fj+k,i−k(x

i−j ; a)f1,j+k

(
x−i+j+kz1

z3
; a

)
× T1(z3)Tj+k(x

j−i+kz1)Ti−k(x
kz1)

− δ

(
xj−i+2kz2

z1

)
f1,i−k

(
x−kz1
z3

; a

)
fi−k,j+k(x

i−j ; a)f1,j+k

(
xi−j−kz1

z3
; a

)
× T1(z3)Ti−k(x

−kz1)Tj+k(x
kz2)

)
.

Taking the limit z3 → x−i−1z1 of (81) multiplied by c(r, x)−1
(
1− x−i−1z1/z3

)
and using fusion relations

(69) and (73) along with

fi−k+1,j+k(x
i−j+1; a)Ti−k+1(x

−k−1z1)Tj+k(x
−j+i−kz1)

=fj+k,i−k+1(x
j−i−1; a)Tj+k(x

−j+i−kz1)Ti−k+1(x
−k−1z1)

in (76) with j → j + k gives

c(r, x)

k∏
l=1

∆1(x
2l+1)δ

(
x−j+i−2kz2

z1

)
fj+k−1,i−k(x

i−j+1; a)Ti−k(x
kz1)Tj+k+1(x

−k−1z2)

− c(r, x)

k−1∏
l=1

∆1(x
2l+1)δ

(
xj−i+2kz2

z1

)
fi−k+1,j+k(x

i−j+1; a)Ti−k+1(x
−k−1z1)Tj+k(x

kz2). (82)

Summing (78), (80), and (82) for 1 ≤ k ≤ i − 1 and shifting the variable z1 7→ xz1 gives LHSi+1,j =∑i+1
k=1 RHSi+1,j(k). By induction on i, we have shown quadratic relation (64).

The quadratic relations (64) are independent of the choice of Dynkin diagrams for the Lie superalgebra

A(M,N), because a = D(0, L; Φ) is independent of the choice of Dynkin diagrams. See Lemma 4.4. □

4.3 Classical limit

The deformed W -algebra Wq,t

(
g
)
yields a q-Poisson W -algebra in the classical limit. As an application

of the quadratic relations (64), we obtain a q-Poisson W -algebra [6, 14, 15]. We study Wq,t(A(M,N))

(M ≥ N ≥ 0,M + N ≥ 1). We set parameters q = x2r and β = (r − 1)/r. We define the q-Poisson

bracket {·, ·} by taking the classical limit β → 0 with q fixed as

{TPB
i [m], TPB

j [n]} = − lim
β→0

1

β log q
[Ti[m], Tj [n]].

Here, we set TPB
i [m] as Ti(z) =

∑
m∈Z Ti[m]z−m −→ TPB

i (z) =
∑

m∈Z TPB
i [m]z−m (β → 0, q fixed).

The β-expansions of the structure functions are given as

fi,j(z; a) = 1 + β log q

∞∑
m=1

[
1
2Min(i, j)m

]
q

[(
1
2 (Max(i, j)−M − 1)

)
m
]
q

[ 12 (M + 1)m]q
(q − q−1) +O(β2) (i, j ≥ 1),

c(r, x) = −β log q +O(β2),

where a = D(0,M +N + 1;Φ) = (N + 1)r +M −N .
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Proposition 4.9 For the q-Poisson W -superalgebra for A(M,N) (M ≥ N ≥ 0,M +N ≥ 1) the gener-

ating functions TPB
i (z) satisfy

{TPB
i (z1), T

PB
j (z2)} = (q − q−1)Ci,j

(
z2
z1

)
TPB
i (z1)T

PB
j (z2)

+

i∑
k=1

δ

(
q

−j+i
2 −kz2
z1

)
TPB
i−k(q

k
2 z1)T

PB
j+k(q

− k
2 z2)

−
i∑

k=1

δ

(
q

j−i
2 +kz2
z1

)
TPB
i−k(q

− k
2 z1)T

PB
j+k(q

k
2 z2) (1 ≤ i ≤ j). (83)

Here we set the structure functions Ci,j(z) (i, j ≥ 1) as

Ci,j(z) =
∑
m∈Z

[
1
2Min(i, j)m

]
q

[
1
2 (Max(i, j)−M − 1)m

]
q

[ 12 (M + 1)m]q
zm (i, j ≥ 1).

The structure functions satisfy Ci,M+1(z) = CM+1,i(z) = 0 (1 ≤ i ≤ M + 1).

5 Conclusion and Discussion

In this paper, we found the free field construction of the basic W -current T1(z) (See (21) and (22)) and

the screening currents Sj(w) (See (18)) for the deformed W -superalgebra Wq,t

(
A(M,N)

)
. Using the

free field construction, we introduced the higher W -currents Ti(z) (See (62)) and obtained a closed set

of quadratic relations among them (See (64)). These relations are independent of the choice of Dynkin

diagrams for the Lie superalgebra A(M,N), though the screening currents are not. This allows us to

define Wq,t

(
A(M,N)

)
by generators and relations.

Recently, Feigin, Jimbo, Mukhin, and Vilkoviskiy [9] introduced the free field construction of the basic

W -current and the screening currents for Wq,t(g) in types A,B,C,D including twisted and supersym-

metric cases in terms of the quantum toroidal algebras. Their motivation is to understand a commutative

family of integrals of motion associated with affine Dynkin diagrams [16,17]. In the case of type A, their

basic W -current T1(z) satisfies

T1(z1)T1(z2) =
Θµ

(
q1

z2
z1
, q2

z2
z1
, q3

z2
z1

)
Θµ

(
q−1
1

z2
z1
, q−1

2
z2
z1
, q−1

3
z2
z1

)T1(z2)T1(z1) (q1q2q3 = 1) (84)

in the sense of analytic continuation. Upon the specialization q1 = x2, q2 = x−2r, q3 = x2r−2, µ = x2a

(a = D(0, L; Φ)), their commutation relation (84) coincides with those of this paper (See (25)). In the

case of sl(N), their basic W -current T1(z) coincides with those of [16, 17], which gives a one-parameter

deformation of Wq,t(sl(N)) in Ref. [2, 3]. In the case of A(M,N), their basic W -current T1(z) gives a

deformation of those of Wq,t

(
A(M,N)

)
in this paper.

Here we discuss about justification of the definition of the deformed W -superalgebra of type A(M,N).

We compare Definition 4.2 with other definitions based on the Miura transformation or the screening op-

erators. In what follows we set q = xr, t = x1−r and β = r−1
r . In Definition 4.2 we define Wq,t

(
A(M,N)

)
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by generators and relations. In Refs. [2, 3] the deformed W -algebra Wq,t(AN ) was proposed by consid-

ering a deformation of the Miura transformation that is the affine counterpart of the Harish-Chandra

homomorphism. First, we study definition of the deformed W -algebras based on the Miura transfor-

mation. Recently, in the conformal case Gaiotto and Rapčák [18] proposed a new class of W -algebras

from D3-branes attached to a 5-brane junction, which contains the W -algebra Wβ

(
A(M,N)

)
as a special

case. Their algebras are denoted as YL,M,N and are referred to as Y -algebra. Recently, Harada, Matsuo,

Noshita and Watanabe [19] obtained a deformation of Y -algebra YL,M,N by considering a deformation of

Miura transformation. Their deformed Y -algebra q-YL,M,N coincided with the deformed W -superalgebra

of type A introduced in [9]. They conjectured quadratic relations of q-YL,M,N that were similar as our

quadratic relations (64). In this revised manuscript we cite Ref. [19] that appeared in arXiv after sub-

mitting the first version of the present paper to J. Phys. A. A deformation of Miura transformation in

Ref. [19] is represented in our notation as follows.

Lemma 5.1 [19] The formula (62) is rewritten as follows.

:
∏

k∈Î( 1−r
r )

R
(1)
k (z)

∏
k∈Î(− 1

r )

R
(2)
k (z) :=

∞∑
i=0

(−1)iTi(x
i−1z)x2iDz . (85)

Here we set Dz = z d
dz and

R
(1)
k (z) = 1− Λk(z)x

2Dz , R
(2)
k (z) =

∞∑
i=0

(−1)i
i∏

l=1

dl(x, r)Λk(x
2(l−1)z)x2iDz .

In the conformal limit x → 1, (85) leads to Miura transformation of the W -algebra Wβ

(
A(M,N)

)
.

Proof of Lemma 5.1. Using (65) and pDzf(z)p−Dz = f(pz) we obtain (85). □

Taking into account of this Miura transformation we define the associative algebra Mq,t(Φ) as a sub-

algebra of Hq,t generated by the Fourier coefficients Ti[m] (m ∈ Z, i = 1, 2, 3, . . .) of the free field

construction of the W -currents Ti(z) =
∑

m∈Z Ti[m]z−m. The algebra Mq,t(Φ) is A(M,N) coun-

terpart of Wq,t

(
AN

)
defined in Refs. [2, 3]. We can set a homomorphism of an associative algebra

φ : Wq,t(A(M,N)) → Mq,t(Φ) by letting φ(T̄i[m]) = Ti[m], because the free field construction of the

W -currents Ti(z) satisfies (64). φ is surjective. We conjecture that φ is injective. In other words, we

conjecture that there doesn’t exist independent relation other than (64) in Mq,t(Φ). Here are two pieces

of evidence to support this claim. In the classical limit, the second Hamiltonian structure {·, ·} of the

q-Poisson algebra [14, 15] is obtained from the quadratic relations. See (83). In the conformal limit all

defining relations of the W -algebra Wβ(AN ) (N = 1, 2) are obtained from the quadratic relations of

Wq,t(AN ) upon appropriate condition. See Ref. [2].

Conjecture 5.2 Wq,t

(
A(M,N)

)
and Mq,t(Φ) are isomorphic as an associative algebra.

Wq,t

(
A(M,N)

) ∼= Mq,t(Φ).
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As a merit of Definition 4.2 it becomes clear that Wq,t

(
A(M,N)

)
is independent of the choice of Dynkin

diagrams.

Next, we study definitions of the deformed W -algebras based on the screening operators. In Ref. [6]

the deformed W -algebra of type g = A
(1)
N , B

(1)
N , C

(1)
N , D

(1)
N and A

(2)
2N were proposed as the intersection of

kernels of the screening operators, that gives a deformation of the W -algebra Wβ(g) in Ref. [20]. In what

follows we work on the vacuum module π0 of the Heisenberg algebra Hq,t. We set the screening operators

Sj (1 ≤ j ≤ L) acting on π0 as

Sj =

∮
Sj(z)dz,

where Sj(w) are the screening currents associated with A(M,N). The screening operators Sj depend on

the choice of Dynkin diagrams Φ of A(M,N).

Lemma 5.3

[Ti(z), Sj ] = 0 (i ≥ 0, 1 ≤ j ≤ L). (86)

Proof of Lemma 5.3. From commutativity (6) we obtain [T1(z), Sj ] = 0. From quadratic relations (75)

Ti[m] (i ≥ 2) are generated by T1[n]. Hence we obtain (86). □

Let Hq,t be the vector space spanned by formal power series of the form

: ∂n1
z Λi1(x

rj1+k1)ε1 · · · ∂nl
z Λil(x

rjl+kl)εl :,

where εi = ±1. We define Wq,t(Φ) as the vector subspace of Hq,t consisting of all currents that commute

with the screening operators Sj (1 ≤ j ≤ L)

Wq,t(Φ) =

L∩
j=1

Ker Sj .

We define the algebra Wq,t(Φ) as the associative algebra generated by the Fourier coefficients of currents

in Wq,t(Φ). As a consequence of (86) we obtain the following inclusion relation.

Corollary 5.4

Mq,t(Φ) ⊆ Wq,t(Φ).

In the same way as for g = A
(1)
N we conjecture the following equality.

Conjecture 5.5

Mq,t(Φ) = Wq,t(Φ).

Finally, we comment on the definition by the quantum Drinfeld-Sokolov reduction. The definitions

of the deformed W -algebra Wq,t(g) to nontwisted affine Lie algebra g were formulated in terms of the

quantum Drinfeld-Sokolov reduction in Ref. [7]. It is still an open problem to formulate definitions of the
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deformed W -algebras Wq,t(g) in terms of quantum Drinfeld-Sokolov reduction to twisted or supersym-

metric cases. To summarize discussions, we conjecture

Wq,t

(
A(M,N)

)
≃ Mq,t

(
Φ
)
= Wq,t

(
Φ
)
.

In this paper we choose the definition by generators and relations. As a merit this definition it becomes

clear that Wq,t

(
A(M,N)

)
is independent of the choice of Dynkin diagrams.

The author would like to mention an open problem. It is still an open problem to find quadratic

relations of the deformed W -algebra Wq,t(g), except A
(1)
N , A(M,N)(1), and the twisted algebra A

(2)
2 . It

seems to be possible to extend Ding-Feigin’s construction to other Lie algebras and obtain their quadratic

relations.
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A Fusion relations

In this appendix we summarize the fusion relations of Λi(z). We use the abbreviation

F
(±)
i,j (z; a) = (1− x±(i+j)z)fi,j(z; a) (a = D(0, L; Φ)).

For (m1,m2, . . . ,mL+1), (n1, n2, . . . , nL+1) ∈ N̂(Φ) defined in (63), we set i = m1+m2+ · · ·+mL+1 and

j = n1 + n2 + · · ·+ nL+1.

• If Max{1 ≤ k ≤ L+ 1|nk ̸= 0} < Min{1 ≤ k ≤ L+ 1|mk ̸= 0} holds, we have

lim
z1→xi+jz2

F
(+)
i,j

(
z2
z1

; a

)
Λ(i)
m1,m2,...,mL+1

(z1)Λ
(j)
n1,n2,...,nL+1

(z2)

= −c(r, x)

Min(i,j)−1∏
l=1

∆1(x
2l+1)Λ

(i+j)
m1+n1,m2+n2,...,mL+1+nL+1

(xiz2). (A 1)

• If Max{1 ≤ k ≤ L+ 1|mk ̸= 0} < Min{1 ≤ k ≤ L+ 1|nk ̸= 0} holds, we have

lim
z1→x−(i+j)z2

F
(−)
i,j

(
z2
z1

; a

)
Λ(i)
m1,m2,...,mL+1

(z1)Λ
(j)
n1,n2,...,nL+1

(z2)

= c(r, x)

Min(i,j)−1∏
l=1

∆1(x
2l+1)Λ

(i+j)
m1+n1,m2+n2,...,mL+1+nL+1

(x−iz2). (A 2)

• If l satisfies l ∈ Î(− 1
r ) and l = Max{1 ≤ k ≤ L+ 1|nk ̸= 0} = Min{1 ≤ k ≤ L+ 1|mk ̸= 0}, we have

lim
z1→xi+jz2

F
(+)
i,j

(
z2
z1

; a

)
Λ(i)
m1,m2,...,mL+1

(z1)Λ
(j)
n1,n2,...,nL+1

(z2)

= −c(r, x)dml+nl
(r, x)

dml
(r, x)dnl

(r, x)

Min(i,j)−1∏
l=1

∆1(x
2l+1)Λ

(i+j)
m1+n1,m2+n2,...,mL+1+nL+1

(xiz2). (A 3)
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• If l satisfies l ∈ Î(− 1
r ) and l = Max{1 ≤ k ≤ L+ 1|mk ̸= 0} = Min{1 ≤ k ≤ L+ 1|nk ̸= 0}, we have

lim
z1→x−(i+j)z2

F
(−)
i,j

(
z2
z1

; a

)
Λ(i)
m1,m2,...,mL+1

(z1)Λ
(j)
n1,n2,...,nL+1

(z2)

=
c(r, x)dml+nl

(r, x)

dml
(r, x)dnl

(r, x)

Min(i,j)−1∏
l=1

∆1(x
2l+1)Λ

(i+j)
m1+n1,m2+n2,...,mL+1+nL+1

(x−iz2). (A 4)

The remaining fusions vanish.

B Exchange relations

In this appendix we give the exchange relations of Λi(z) and Λ
(i)
m1,m2,...,mL+1(z), which are obtained from

Proposition 4.3. For (m1,m2, . . . ,mL+1) ∈ N̂(Φ) in (63), we set i = m1 +m2 + · · ·+mL+1. We assume

i ≥ 1. We calculate

f1,i

(
z2
z1

; a

)
Λl(z1)Λ

(i)
m1,m2,...,mL+1

(z2)− fi,1

(
z1
z2

; a

)
Λ(i)
m1,m2,...,mL+1

(z2)Λl(z1), (B 1)

where a = D(0, L; Φ).

• If l satisfies ml ̸= 0 and l ∈ Î( 1−r
r ), (B 1) is deformed as

f1,i

(
z2
z1

; a

)
Λl(z1)Λ

(i)
m1,m2,...,mL+1

(z2)− fi,1

(
z1
z2

; a

)
Λ(i)
m1,m2,...,mL+1

(z2)Λl(z1) = 0. (B 2)

• If l satisfies ml ̸= 0 and l ∈ Î(− 1
r ), (B 1) is deformed as

c(r, x)dml+1(r, x)

d1(r, x)dml
(r, x)

: Λl(z1)Λ
(i)
m1,m2,...,mL+1

(z2) :

×
(
δ

(
x−i−1+2(m1+m2+···+ml−1)

z2
z1

)
− δ

(
xi+1−2(ml+1+ml+2+···+mL+1)

z2
z1

))
. (B 3)

• If l satisfies l < Min{1 ≤ k ≤ L+ 1|mk ̸= 0}, (B 1) is deformed as

c(r, x) : Λl(z1)Λ
(i)
m1,m2,...,mL+1

(z2) :

(
δ

(
x−i−1z2

z1

)
− δ

(
x−i+1z2

z1

))
. (B 4)

• If l satisfies l > Max{1 ≤ k ≤ L+ 1|mk ̸= 0}, (B 1) is deformed as

c(r, x) : Λl(z1)Λ
(i)
m1,m2,...,mL+1

(z2) :

(
δ

(
xi−1z2
z1

)
− δ

(
xi+1z2
z1

))
. (B 5)

• If l satisfies ml = 0 and Min{1 ≤ k ≤ L + 1|mk ̸= 0} < l < Max{1 ≤ k ≤ L + 1|mk ̸= 0}, (B 1) is

deformed as

c(r, x) : Λl(z1)Λ
(i)
m1,m2,...,mL+1

(z2) :

×
(
δ

(
x−i+1+2(m1+m2+···+ml−2)

z2
z1

)
− δ

(
xi+1−2(ml+ml+1+···+mL+1)

z2
z1

))
. (B 6)
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