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Abstract

Vertex operator approach is a powerful method to study exactly solvable models. We review
recent progress of vertex operator approach to semi-infinite spin chain. (1) The first progress is a
generalization of boundary condition. We study Uy, (;\l(2)) spin chain with a triangular boundary,
which gives a generalization of diagonal boundary [3| [4]. We give a bosonization of the boundary
vacuum state. As an application, we derive a summation formulae of boundary magnetization. (2)
The second progress is a generalization of hidden symmetry. We study supersymmetry Uy, (;\l(M|N))
spin chain with a diagonal boundary [9]. By now we have studied spin chain with a boundary,
associated with symmetry Uy (;\l(N))7 Uq(Aéz)) and Uq,p(sAl(N)) [51 16, [7], where bosonizations of vertex
operators are realized by "monomial” . However the vertex operator for Uq(sAl(M|N)) is realized by

”sum”, a bosonization of boundary vacuum state is realized by "monomial”.


http://arxiv.org/abs/1404.5747v1

1 Introduction

There have been many developments in exactly solvable lattice models. Various models were found to
be solvable and various methods were invented to solve these models. Vertex operator approach is a
powerful method to study exactly solvable lattice models. Solvability of lattice models is understood by
means of commuting transfer matrix. The half transfer matrices are called ”vertex operators” and are
identified with the intertwiners of the irreducible highest weight representations of the quantum affine
algebras Uy (g). This identification is basis of vertex operator approach. Vertex operator approach to
boundary problem has been extended as generalizations of the theory on half-infinite X X Z spin chain
with a diagonal boundary [2]. In this paper we review recent progress of vertex operator approach to
semi-infinite spin chain with a boundary. We start from solutions of the boundary Yang-Baxter equation,
and introduce the transfer matrices in terms of a product of vertex operators. We diagonalize the transfer
matrices by using bosonizations of the vertex operators, and study correlation functions.

The plan of the paper is as follows. In section 2 we study Uq(sAl(2)) spin chain with a triangular
boundary, which is a generalization of diagonal boundary. We give a bosonization of the boundary vacuum
state, and calculate boundary magnetization. In section 3 we study supersymmetry Uq(sAl (M+1|N+1))
spin chain with a diagonal boundary. We give bosonizations of boundary vacuum states. In section 4 we

summarize a conclusion. Throughout this paper we use the following abbreviations.

—n

" —q ad (m : even),
[nlq = — Hl—p z), Op =
m=0

1
0 (m:odd). (1)

q—q
2 XXZ spin chain with a triangular boundary

2.1 Transfer matrix

The first progress is a generalization of boundary condition. We study XXZ spin chain with a triangular

boundary [3, 4]. The Hamiltonian HJ(B,i) is given by

" e, , . 1—¢*1+7r s
H](g ) — 3 Z(Uk+1gk +UZ+1UZ + Aoj110%) — 4q 1— 0177 _TU%, (2.1)
k=1

where 0%, 0¥, 0%, 0%

are the standard Pauli matrices. In what follows we set V = Cv; @ Cv_. Consider
the infinite dimensional vector space --- ® V3 ® Vo ® Vi, where the matrices V; are copies of V. Let us

introduce the subspace H(?) (i = 0, 1) of the half-infinite spin chain by
HO = Span{---® Up(N) @« @ Up(2) @ Up(1)| p(N) = (- )NJ” (N> 1)}, (2.2)

where p : N — {£}. Here we consider the model in the limit of half-infinite spin chain, in the massive
regime where A = %, -1<¢<0,-1<r<1,seR. The Hamiltonian Hfgi) acts on the subspace
H®. In Sklyanin’s framework [I], the transfer matrix T(i Z)(C ;7,$) that is a generating function of the

Hamiltonian H](Bi) was introduced. It is built from two objects: the R-matrix and the K —matrix. We



introduces the R-matrix R(() by

(1—42) (1—q )¢
L

- C2 1 <2
RO =20 u—%>< A | 2:3)

-¢°¢ 1-¢C

Here we have set x(¢) = ngé?fl (%q/g;‘ﬂg The matrix elements of R(¢) € End(V ® V') are given by

R(Q)ve, ® ve, = Ze,l o=t Ve, ® ve, R(C)cl 7, where the ordering of the index is given by vy ® vy, v @
’ 172

v_, - @ vy, v- @u_. R;;(¢) acts as R(¢) on the i-th and j-th components and as identity elsewhere.
The R-matrix R({) satisfies the Yang-Baxter equation.

R12(C1/C2) R13(C1/C3) Ra3(C2/C3) = Ra3(Ca/(3) Ru3(C1/¢3) R12(C1/C2)- (2.4)

The normalization factor x(¢) is determined by the following unitarity and crossing symmetry condi-
tions: Ri2(¢)Ra1(¢71) =1, R(C)Z/zz,i = R(—qilﬁfl):ijﬁ. Also, we introduce the triangular K-matrix
K®)(Q) = K®) (¢, s) by

1-r¢ s¢(C—-¢?)

2.
KD(Gr,s) = ;E(Cgé;?) C20—7° C21_T 7 2
() 1<_? <o
(=) (¢ _ P -
K6 ) o(C25r) SC(CZ_C_Q) 1) (20
¢ —r

where we have set ¢(z;7) = ggz:igigzggzigz;: The matrix elements of K(*)(¢) € End(V) are given
by K& (Qve = Y. vo KF) ()5, where the ordering of the index is given by v4,v_. The K-matrix

K)(() satisfies the boundary Yang-Baxter equation :

K () Ro1 (G1G) K () R1a (€1 /C2) = Rar (G /G) K (1) Raa (1 Go) KM (o). (2.7)

The normalization factor ¢(z; r) is determined by the following boundary unitarity and boundary crossing
symmetry : K& (QOK® (¢71) =1, K& (—¢71¢7He = Dt e—r R(= ac?); 6162K(i)(C) We introduce
the vertex operators d¢ """ (¢) (¢ = £) which act on the space H( (i = 0, 1). Matrix elements are given

by products of the R-matrix as follows:

N

(=i <p(N)-p(2)'p(1) _ . w(d) p(3)’

(@ D) pyp@ p(1) = ) [R5 0 (2:8)
#(1);1(2),--+ u(N) =% j=1

where £1(0) = e and pu(N) = (—1)N+1=". We expect that the vertex operators ®' " (¢) give rise to

well-defined operators. We set orl=oY ) = 6(17“)( g 1(). Following the strategy [2] we introduce

—€

the transfer matrix T( (C ; T, s) using the vertex operators.

TE(Grs) = Y @ICHES (G 928G 7 (0). (2.9)

€1,620=7%



Heuristic arguments suggest that the transfer matrix commutes :
T5 ) (Cuirys), T (G s)] = 0 for amy G, Go. (2.10)

The Hamiltonian H,(gi) (21) is obtained as

d ~(sa 4
d—CT}j’ NCGrs)| = - _qq2 HS) 4 const. (2.11)
¢=1

We are interested in diagonalization of the transfer matrix féi’i) ¢y 8).

2.2 Vertex operator approach

We formulate the vertex operator approach to the half-infinite X X Z spin chain with a triangular bound-
ary. Let V¢ the evaluation representation of Uq(sAl(2)). Let V(A;) the irreducible highest weight U, (5:\1(2))
representation with the fundamental weights A; (i = 0,1). We introduce the vertex operators @217“—)(@“ )

as the intertwiner of U, (s1(2)):

PIT()  V(A) — V(M) @ Ve, @789 -z = A(z) - 1 759((), (2.12)
for z € U, ( 1(2)). We set the elements of the vertex operators : ®1=5)(() = 3=, =) ) ® ve.
We set @159 ) = 1 & Z)( q~1¢). Following the strategy of [2], as the generating function of the
Hamiltonian H](3 ) we mtroduce the “renormalized” transfer matrix T S l)(c T, 8)

TED (. _ Pr(i:1—4) K& 62(1)(1 i,1) _ (qz;q4)oo 2.13
B (CaTaS)_g Z €1 (C ) (C?T S) (C)a g_W ( . )
61,62:ﬂ: ’ o0

Following strategy [2], we study our problem upon the following identification:
+,i (1 —iyi H—iy #(1—1,i H*(1—ii
TE ) (Gros) = T (G s), @079 (0) = @49 (¢), @00 (¢) = @0 9((). (2.14)

The point of using the vertex operators =) (¢) associated with Uq(sAl(2)) is that they are well-defined
objects, free from the difficulty of divergence. It is convenient to diagonalize the “renormalized” transfer

matrix Téi’i)(c; r,s) instead of the Hamiltonian H](Bi).

2.3 Boundary vacuum state

We are interested in bosonizations of the boundary vacuum states p(i; +| given by

(i TS (¢, 0) = AD (¢ r) g i 4, (2.15)

. (0) (. . (1) (. 1 @q4(r€2)@q4(q27‘€*2) B
for i = 0,1. Here we have set A™”(¢;7) = 1 and AYV(Gr) = =5 D6 (23 Where O,(z) =
q q

(P;D0)o0(2;P)00(P/2; P)o- We introduce bosons a,, (m # 0) and the zero-mode operator 9, a by

[am, @n] = Omtn.o [2m]7;11[m]q (m,n £0), [9,a] =2. (2.16)



The relation between the zero-mode and the fundamental weights are given by [0, Ag] = 0 and A; =
Ao+ 5. Using the bosonization of the vertex operators @gl_i’i) (¢) we have a bosonization of the boundary

vacuum state. The boundary vacuum states p(i; £| are realized by

S _
B(0;+|= B(0]exp, (=sfo), B(Li+|= p(llexp, (—Eew hl), (2.17)
s _ s
5(0;—| = (0] exp, s <760q ho) . (L= = s(1]exp, (Tfl) , (2.18)
n(n—1)
where we have used g-exponential exp, (z) = Y 7 4 [nfq! a". Here p(i| are given by
1 _
B(i| = (il exp (Gi), i:—iz TR +Zaz>an, (i| =1®e ™. (2.19)
n:l
where we have set
—5n/2, n
q r -
) —3n/2 1—g" — T (’L—O),
50 = g, LT [2(] ) e (2.20)
nlq q r o
e, O

The boundary vacuum states |+;4)p are realized similarly.

2.4 Boundary magnetization

In this section we study the boundary magnetization. Let & be the matrix E. . at the first site of the
space H(). We have a realization of this local operator
L 2 4%)
£, = (I)*(z,lfz) —1 1 —i,1) — (q 4 OO_ 2.21
€,€ g € ( C) (C) ¢=1 ’ g (q4’ q4)oo ( )
Hence, using the bosonizations of the vertex operators, the Chevalley generators e, f;,h; (j =0,1), and

the boundary vacuum states, we calculate the following vacuum expectation values.
B<i; :|:|5676/|:|:; i>B

- - 2.22
B(i; £[|+;4) B (2:22)
For instance, the boundary magnetizations are derived:
B(0; —|of[—:0)p )2 c- )"
= 2(1—r) , 2.23
B{0;—|=:0)p z::l 1—7°q2" ? (2:23)
0: — +_. 0 o 2 2n 1 4n
B0 —loy [0 _ S = T(;Fq ) , (2.24)
B(0; == 0)5 = (1—rg>)?
B(0; —[oy [—:0)B
= 0. 2.25
B{0;—[—;0)p (2:25)

This is main result of the paper [4].

3 U,(sl(M +1|N + 1)) spin chain with a diagonal boundary

3.1 Transfer matrix

The second progress is a generalization of hidden symmetry. We study Uq(sAl (M+1|N+1)) spin chain with
a diagonal boundary [9]. Let us set —1 < ¢ < 0 and r € R. Let us set M,N =0,1,2,--- (M # N) and



L,K=1,2,---,M+ N +2. For simplicity we assume the condition L + K < M + 1. (More general cases
are studied in [9].) Let us introduce the signatures v; (i =1,2,--- , M+ N+2) by vy =+ =vp41 = +,
UM+42 = -+ = UpoN+2 = —. Let us set the vector spaces V; = @jj\f{lej and V = @;V:TCUMHH.
In this section we set V' = Vi @& V. The Zs-grading of the basis {v;}1<j<m+n+2 of V is chosen to be
[v;] = Uj;q (j=1,2,---,M + N +2). A linear operator S € End(V) is represented in the form of a
(M 4N +2) x (M + N +2) matrix : Sv; = Y1V 24,8, .. The Zy-grading of (M 4+ N +2) x (M + N +2)
matrix (S; ;)1<ij<m+n+2 is defined by [S] = [v;] + [v;] (mod.2) if RHS of the equation does not depend
on i and j such that S; ; # 0. We define the action of the operator S; ® --- ® S,, where S; € End(V)

have Zs-grading.

5105 ® Q8- v, ®Vj, @ Qvj,

k—1
= exp (71’\/ Z Sk sz ) S1vj, ® Savj, ® -+ - ® Spvj,, . (3.1)
=1
We set the R-matrix R(z) € End(V ® V) for U, (;(M + 1|N + 1)) as follows.
) ) M+N+2
R(Z) = T(Z)R(Z)v R(Z)Ujl ® vj, = Z Vi @ Usz( )?clldkz (32)
kl,klz 1
Here we have set
_ -1 (1<j<M+1),
R(z)j5 = (- 2) (3.3)
’ —t " M+2<j<M+N+2
R(z)" = (=2 (1<i#j<M+N+2) (3.4)
" (1—¢?2) ~ — - ’
(el U= (i< MmN+ 2),
BN\ _ (1-q22)
R(2)7; = (1-¢z s 2y, (3.5)
(—1)[villvs] (1<j<i<M+N+2),
(1-4¢°2)
R(z)z; = 0 otherwise. (3.6)
Here we have set
1-M+N > (M —N —1)m], _
r(z) =2~ exp | — qr("m =27 . (3.7)
( 2 (0~ Ny,
The R-matrix R(z) satisfies the graded Yang-Baxter equation.
Ria(21/22) Ri3(21/23) Ra3(22/ 23) = Ras(22/23)Ri3(21/23) Ri2(21/ 22). (3.8)
We set the diagonal K-matrix K(z) € End(V) for Uq(sAl(M + 1|N + 1)) as follows.
2M QD(Z) — — MEN2 — ;
K(z) =z M-8 ——-K(2), K(2)v;= Z vpd; R K (2)7, (3.9)
p(z71) =
where we have set
1 (1<j<L),
(NI 1—r/z .
K(2); = 1_/2 (L+1<j<L+K), (3.10)

272 (L+K+1<j<M+N+2).



Here we have set

2 RIN+Dmly 9 e X [2(M = N — j)ml, s o
() = exp mz_:lm[[2((M+—J)V)ln]qz +;mz::1 [27(n[2(M—]\?))m]]q (1—-q¢"")2 (3.11)

+ | Z Z [2(_M - N-2 _T):Z)qm]q (1 + q2m)22m _ Zl [;Z[&WN__]V]‘))"Z}]; qm22m

. i {[(—M—i—N—i—L)m]q [(—M+N+L+K)m]q(qL_KZ/r)m}>'

m[(M — N)m],
The K-matrix K (z) € End(V) satisfies the graded boundary Yang-Baxter equation
K2 (ZQ)RQl (leg)Kl (Zl)ng (2’1 /2’2) = R21 (2’1 /ZQ)Kl (21)R12(2122)K2 (22) (312)

We introduce the vertex operators :Igj (z) and the dual vertex operators :I;;‘ (2)forj=1,2,--- .M+ N+2.

Matrix elements are given by products of the R-matrix

M+N+2
((5 _(Z))---p(N)/mp(2)/p(1)/ — lim JFZJF H R(z M(J) p(5)’ (3.13)
J ~p(N)--p(2) p(1) T s #(J 1) p(5)° )
w(1),p(2), -, u(n)=137=1
@*(Z))---p(N)’~~~p(2)’p(1)’ —  lim MJFXN:H H p(J) p(i—1) (3.14)
J wp(N)--p(2) p(1) T 5% P(J) w) ’

w(1),p(2),+,p(n)=15=1
where p(0) = j. We expect that the vertex operators &y(z) and :13;(2) give rise to well-defined operators.
Let us set the transfer matrix T5(z) by

R M+N+2,\
To()= Y. B DK () (2)(~1)M), (3.15)

j=1
Heuristic arguments suggest that the transfer matrix commutes :

~

[T5(z1),Tp(22)] =0 for any 2, 2. (3.16)

The Hamiltonian of this model Hp is given by

d

HB:ETB |z 1= Zhjj+1+__K1( )|z:1, (317)

where hj,jJrl = Pj,jJrl %Rj1j+1(z)|z:1.

3.2 Vertex operator approach

We formulate the vertex operator approach to Uq(sAl(M + 1|N + 1)) spin chain with a diagonal boundary
[9). Let V, the evaluation representation of Uq(sAl(M—l—1|N+1)) and V*S its dual. Let L()) the irreducible
highest representation with level-1 highest weight A. We introduce the vertex operators ®(z) and ®*(z)
as the intertwiners of Uq(s/,\l(M +1|N+1)):

O(z): LN) = L(p) @V, ®(z)-z=A(z)-  P(2), (3.18)
®*(2) : L(p) = LN @V}, 0% (2) -z = Az) - D*(2), (3.19)



for z € Uy(sl(M + 1|N + 1)). We expand the vertex operators ®(z) = EinJ{NH D;(2) @ v, D*(2) =
Z;W{NH ®%(z) ® vj. We set the "normalized” transfer matrix T (z) by
M+N+2

Tp(z)=g Y, @5"HEKD(2)]0;(=) (-, (3.20)
j=1

T —1M

where we have used g = e2™-N exp (— P %q ) Following the strategy proposed in [2],

we consider our problem upon the following identification.

~

Tp(z) = Tr(z), ®;(z)=®;(z), ®5(z) = P%(2). (3.21)

J J

The point of using the vertex operators ®;(z), ®7(z) is that they are well-defined objects, free from the
difficulty of divergence. It is convenient to diagonalize the “renormalized” transfer matrix Tg(z) instead

of the Hamiltonian Hp.

3.3 Boundary vacuum state

In this section we give a bosonization of the boundary vacuum state (B| given by
(B|T5(z) = (B|. (3.22)

Let us introduce the bosons and the zero-mode operator [§] by

Fobc Qur,Qu,Qu, (neZk=1,2--- M+1,1=1,2,---,N+1), (3.23)
satisfying the following commutation relations.
i [m]g i i g
[a’mv a’n] = 5i,j5m+n,077 [aOa Qaj] = 6’i,ja [a’Ov a’O] = 07 (324)
7 i [m]g 7 (N
(b1 b2 = =i j0mtm0 %, [bh, Qo] = —0ij, b6, b] = 0, (3.25)
i [mlz i
[€hns n] = Gij0meno——=, [co, Qes] = by, [eh, o] = 0- (3.26)
et us introduce the generating function c¢'(z) = — o pmm o i + chlogz. We introduce the
L i d he g ing f i ! n0 ol Q blogz. Wi d h

projection operator & = HNH €& and 7y = vaﬁl 7, where we have set &/(z) = Yomez Sz =

e=c(2) L ni(z) = n zml = e (@) ., Using the bosonizations of the vertex operators we
mez Tm#
have a bosonization of the boundary vacuum state (B|. However the vertex operator for Uq(sAl (M +
1|N + 1)) is realized by "sum”, a bosonization of boundary vacuum state is realized by ”monomial”.
M+1 . _ N+1 . N+1 .
Let us set the highest weight vector vy, .= = <O|e_62i:1 Quit(=A) 37 QD QcJ, where (0]
satisfying (0a’, = (0|b) = (0|c), = 0forn > 0and 1 < i< M+1,1<j < N+1. Let us set

by = E;VIJ{NH W}LL”’ where we have used h;,, = a’.q —iml/2 _ gittglml/2, hari,m =
aMA1g=ImI/2 L pl o= 1mI/2 and hpyigyjm = —bl,q1™/? 4 b3~ I™I/2. Here we have set
Min(i, j Min(i, ) < M + 1),
" ) (Mini, ) .
oM +1) — Min(3,§)  (Min(i,§) > M +1),
M~ N —Max(i,j)  (Max(i,§) < M + 1),
8, — (3.28)

—M — N —2+Max(i,j) (Max(i,j) > M +1).



A bosonization of the boundary vacuum state (B| is given by
(Bl = v3,,., exp (G) - mo&o- (3.29)

Here we have set the bosonic operator G by

1]\4+N+1 (o) mq_zm 1N+1 00 mq_2m o
¢ = 2 Z Z [m]2 P 05m = 2 Z Z [m]2 CimCrn
Jj=1 =1 q j=1 m=1 q
M+N+1 oo N+1 oo ‘
Y D Bt D Y YimCn, (3.30)
j=1 =1 j=1 m=1
where we have used
m,(—L—=3/2)m (L—K—3/2)m /,.m —m
o = B - 650 — 2 /s, N 3.31
Bj,m ﬂj,m [m]q j,L [m]q 5, L+K> Vjm [m]q ms ( )
—3m/2 —m/2
4 - O 1<j<M
[Til]sq ) (1<j< M),
e (=M +1), (3:32)

O (M+2<j<M+N+1).

This is main result of the paper [9].

4 Conclusion

From the above progress, we suppose that the boundary vacuum state (B| of semi-infinite Uy(g) spin

chain with a triangular boundary is realized as follows.
(B = (vac| exp (B) exp, (C), (4.1)
where B is a quadratic expression in the bosons and C is a simple expression in the Chevalley generators.

We would like to check this conjecture in the future.
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