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ABSTRACT

We give a bosonization of the quantum affine superalgebra U, (sl(N|1)) for an
arbitrary level k& € C. The bosonization of level k& € C is completely different
from those of level k = 1. From this bosonization, we induce the Wakimoto
realization whose character coincides Xvith those of the Verma module. We give
the screening that commute with U,(sl(N|1)). Using this screening, we propose
the vertex operator that is the intertwiner among the Wakimoto realization and
typical realization. We study non-vanishing property of the correlation function
defined by a trace of the vertex operators.

* Work supported by Grant-in-Aid for Scientific Research C from Japan Society for
Promotion of Science.
T e-mail address: kojima@yz.yamagata-u.ac.jp



2 TAKEO KOJIMA

1. Introduction

Bosonizations provide a powerful method to construct correlation function
of exactly solvable models. We construct a bosonization of the quantum

affine superalgebra Uq(sAl(N\l)) (N > 2) for an arbitrary level k € C [1, 2].
For the special level £ = 1, bosonizations have been constructed for the

quantum affine algebra U,(g) in many cases g = (ADE)"), (BC)W), Gél),

sI(M|N), osp(2/2)® [3, 4, 5, 6, 7, 8, 9, 10]. Bosonizations of level k € C are
completely different from those of level £ = 1. For an arbitrary level k£ € C
bosonizations have been studied only for Uy(sly) [11, 12] and U,(sl(N|1))
[1, 2]. Our construction is based on the ghost-boson system. We need
more consideration to get the Wakimoto realization whose character co-
incides with those of the Verma module. Using &-n system we construct
the Wakimoto realization [13, 14] from our level k bosonization. For an
arbitrary level £ # —N + 1 we construct the screening current that com-
mutes with Uy (s{(N|1)) modulo total difference. By using Jackson integral
and the screening current, we construct the screening that commute with
Uq,(sl(N11)) [13, 15]. We propose the vertex operator that is the inter-
twiner among the Wakimoto realization and typical realization. By using
the Gelfand-Zetlin basis, we have checked the intertwining property of the
vertex operator for rank N = 2, 3,4 [15]. We balance the background charge
of the vertex operator by using the screening and propose the correlation
function by a trace of them, which gives quantum and super generalization
of Dotsenko-Fateev theory [16].

The paper is organized as follows. In section 2 we review bosonizations

of Uy(sly). In section 3 we construct a bosonization of Uy (sl(N|1)) for an
arbitrary level k£ € C. We induce the Wakimoto realization by &-n system.

In section 4 we construct the screening that commute with U, (sl(N|1)) for
an arbitrary level £ # —N + 1. We propose the vertex operator and the
correlation function.

2. Bosonization : Level £k =1 vs. Level £ € C

In this section we review the bosonization of the quantum affine algebra

Uq,(slz). The purpose of this section is to make readers understand that the
bosonization of level k € C is complete different from those of level k = 1.
In what follows let ¢ be a generic complex number 0 < |g| < 1. We use the
standard g-integer notation :

qt—qg ™
mlyg = ———
mlo =% — 5

First we recall the definition of Uq(sAlg). We recall the Drinfeld realization
of the quantum affine algebra U, (sls).

Definition 2.1 [17] The generators of the quantum affine algebra Uq(sAlg)
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are tX  hy, h, ¢ (n € Z,m € Zy). Defining relations are

©,n’?

¢ : central, [h,h,,] =0,

[2m]q[eml,
hm; hn = Om4n0—
[ ] A —

[h, 2% (2)] = £22%(2),

o ()] = £ 20 G ),
F(21)25(22) = (¢7%21 — 22)a™ (22)2™ (1),

SR P S
[z (1), 27 (22)] = (g —q1)z120

x (g n /200t (g8 2) — 8(g° 21 /2)0 (a5 22)).

(z1 — qi222)az

where we have used 0(z) = Y,z 2". We have set the generating function

xi(z) = fozfnfl,

nez
wi (qigz) = qih@i(qfq_l) Z7n>0 hm 2T .

When the center c¢ takes the complex number ¢ = k € C, we call it the
level k representation. We call the realization by the differential operators
the bosonization. Frenkel-Jing [3] constructed the level k = 1 bosonization

of the quantum affine algebra U,(g) for simply-laced g = (ADE)M). Here

we recall the level k£ = 1 bosonization of Uq(sAlg). We introduce the boson
an (n € Zyp) and the zero-mode operator 0, o by

[2m]y[m]

[am7 an} = 1 5m+n,07 [81 Oé] =2

m

In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.2 [3] A bosonization of the quantum affine algebra Uq(sAlg)
for the level k =1 is given as follows.

C:1, h:a, hn:an7

azi(z) =: ejFZWfO ﬁqsz_ni(a+a) T
We have used the normal ordering symbol ::

. _fwa (k<0), o o
Dapa = { way (k> 0), cal =: da := ad.
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Next we recall the level k bosonization of the quantum affine algebra

Uq(;lg) [11]. We introduce the bosons and the zero-mode operator a,, by, ¢,
Qa, Qp, Qc (n € Z) as follows.

2 k+2
[am7 an] - 5m+n70 [ m]q[( m+ )m]q’ [dDu Qa] = 2(k + 2)7
2ml,|12m ~
[bm7bn] = - m-l—n,()[]q"[l]qy [b()va] = -
2m|,(2m -
[Cmycn] = m+nma [007 QC] = 47
where ag = QIqu ao, bo = QIqu bo, ¢y = %co. It is convenient to

introduce the generating function a(NV|z; «).

a - Q
a(N|z;a) = — Z [N:L] gz logz + Wa
n#0 q

In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.3 [11] A bosonization of the quantum affine algebra Uq(sAlg)
for the level k € C is given as follows.

c = keC, h=ag+ by,

—1 —k—2,. —k—1,,.
+ — = (el )*C(Zlq 20) .
x"(2) PEEE ( e :
_ . e b2laT 2z —e(2]g 3 2;0) :)
(z) = — (s enthraatsmE52)-alk sl 52 el et 50)
(¢—qh)

ok 2]z M) —a(kt20q 722, 52 ) 1b(2lg 25 12— 1) +e(2lg2F 7 2,0) )

The level £k = 1 bosonization is given by "monomial”. The level k¥ € C
bosonization is given by ”"sum”. They are completely different.

3. Bosonization of Quantum Superalgebra U,(sl(N|1))

In this section we study the bosonization of the quantum superalgebra
Uq(sl(N]1)) for an arbitrary level k € C.
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3.1. Quantum Superalgebra U,(sl(N|1))

In this section we recall the definition of the quantum superalgebra U, (s[(N|1)).
We fix a generic complex number ¢ such that 0 < |¢g| < 1. The Cartan ma-

trix (A;;)o<ij<n of the affine Lie algebra sI(N|1) is given by

Aij = (Vi + Vig1)0ij — Vibij41 — Vig10ig1,5-

Here we set vy = -+ = vy = +,vN+1 = Y9 = —. We introduce the
orthonormal basis {¢;|i =1,2,---, N + 1} with the bilinear form, (¢;e;) =
v;0; ;. Define € = ¢; — Nl’l i ;VH €. Note that Z] 1€j = 0. The classical
simple roots &; and the classical fundamental weights A; are defined by
O = Vi€ — Vip1€i41, /_\z = 3»:1 €; (1 <1 < N) Introduce the affine
weight Ag and the null root § satisfying (Ag|Ag) = (6]0) = 0, (Ag|d) = 1,
(Aole;) =0, (d]e;) =0, (1 <i < N). The other affine weights and the affine
roots are given by ag = 6 — Z;Vﬂ Qj, o = Qy, A = 1_\1 + Ao, (1 <1< N)
Let P = &Y ,ZA; & Z5 and P* = &Y Zh; & Zd the affine sI(N|1) weight
lattice and its dual lattice, respectively.

Definition 3.1 [18] The quantum affine superalgebra Uq(sl(N|1)) are
generated by the generators h;,e;, fi (0 < i < N). The Zs gmdmg of the
generators are |eg] = [fo| = [en| = |fn| = 1 and zero otherwise. The
defining relations are given as follows.

The Cartan-Kac relations :  For N > 2, 0 < 4,57 < N, the generators
subject to the following relations.

h.
g —q M
[his hy] = 0, [hi,e5] = Aijej, [ha, ;] = —Aijf5, [ei, ] = 5,37q e

The Serre relations :  For N > 2, the generators subject to the following
relations for 1 <i <N —1,0<j < N such that |A;j| = 1.

[61', [62', ej]q—l]q =0, [fu [fh fj]q‘l}q =0.

For N > 2, the generators subject to the following relations for0 <1i,7 < N
such that |A; ;| = 0.

e e5] =0, [fi, f;] =0
For N > 3, the Serre relations of fourth degree hold.

[eNa [60’ [eNa eN—l}q*I]Q] =0, [607 [617 [607 eN]Q]qfl]

{fN? [f07 [fNa fol]q—l]q] = 07 [f07 [f17 [f07 fN]q]q—l]
For N =2, the extra Serre relations of fifth degree hold.

J

0
0.

[627 [607 [627 [60’ ‘51]9‘{]“q*1 = [60’ [627 [60? [€2a 61]q]]]q71’

[f2, [fo, [f2, [fo, filglllg-1 = [fo, [f2, [fo, [f2, filglllg—
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Here and throughout this paper, we use the notations
(X, Y]e = XY — (-1)X ¥y x.

We write [X,Y]1 as [X,Y] for simplicity.
The quantum affine superalgebra U,(sl(N|1)) has the Zj-graded Hopf-
algebra structure. We take the following coproduct

Ale))=e;@1+¢" e, A(fi)=fiog"+1® fi, A(h) =hi@1+1® h;,

and the antipode

Sle)) = —q Mei, S(fi) = —fig", S(hi) = —ha.
The coproduct A satisfies an algebra automorphism A(XY) = A(X)A(Y)
and the antipode S satisfies a Zo-graded algebra anti-automorphism S(XY) =
(—=1)XI¥IS(Y)S(X). The multiplication rule for the tensor product is Zo-
graded and is defined for homogeneous elements X,Y, X', Y’ € U, (sl(N|1))
andv € Vo € Why XYV - X' @Y = ()Y IXIXX @YY’ and

XY - vow = (—1)YI"Xy® Yw, which extends to inhomogeneous
elements through linearity.

Definition 3.2 The quantum superalgebra Uq(sAl(N]l)) is the subalge-

bra of Uq(;l(N]l)), that is generated by ey, es,---,en, f1,f2, -+, fn, and
lah27"'7hN-

We recall the Drinfeld realization of Uq(sAl(N |1)), that is convenient to
construct bosonizations.

Definition 3.3 [18] The generators of the quantum superalgebra Uq(;l(N]l))

are xfn, him, h, ¢ (1 <i < N,n € Z,m € Zy). Defining relations are

c: central, [hj, hjm,] =0,

[Ai7j m} q [Cm] q qfc|m| 5

[Pims Pjn) = m+n,0
[hi, xy (2)] = A, jz7 (),
[hi +( )] = [Ai jm]q —clm| ,m ( )
i,m> Ly \Z)] = m q z27x(2),
- [Aijmlq
[hi,mﬂfj (2)] = —TZ Ly (2),

(21 — ¢ 29)xf (21)a; (22) = (¢ 21 — 20)a; (20)a] (21) for |Ai ] #0,
[xi(zl),xji(ZQ)] =0 for |[4; ;| =0,
+

[ (1), 25 (22)] = ((1-?% (5(6.77621/22)1#?((1%22) - 5((1621/22)1/{(977522)) :
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(0 (1) (2)02(2) — (a4 g ()t (D (s2) + o (2o () (22))
+ (214> 22) =0 for [4;;| =1, i # N,

where we have used §(z) = Y,,cz 2. Here we have used the generating
function

+ + _—-m-1
zi(2) = Z Tim?
w:l:(q:l:gz) _ q:l:hiei(q—qil) Zm>0 hi,imzq:m'
7
The relation between two definitions of Uq(sAl(N |1)) are given by

ho=c—(h1+---+ hy), ei:$¢+,07 fi=wz;y for 1 <i<N,

- - - - —hi—hg—-—h
eo = (—Dzyo 230, (250, 21 1lg1]g—1 g1 N,

fo= qh1+h2+m+hN[' - [[xfflﬁ x;,o]qa x;;o]qa e 'x},o]q-

For instance we have the coproduct as follows.

Alhim) = him®q% 4¢3 @hipm (m>0),
A(hi—m) = hi,—m ® q_gch + q_% ® hi—m (m > 0).

3.2. DBosonization

In this section we construct bosonizations of quantum superalgebra U, (sl(N|1))
for an arbitrary level k € C [2]. We introduce the bosons and the zero-mode
operators al,, Q) (m € Z,1 < j < N), b, Q) (me€ Z,1<i<j<N+1),

I QI (m € Z,1 <i<j < N) which satisfy
_ (A + N —1)mlq[A; ;m]

[ainvagz] - m q5m+n,07 [af),Qi] = (k + N — 1)AiJ’
.. . [m]2 .. YRy

(b3, b8I'] = —Vi’/j#5i,z‘/5j,j'5m+n,o, bg?, Q7] = —vivjd; 6, i,
)2 o

G #51.’1./5”, mtn,0, (€07, Qe ] = 0iindj g1,

Q). Q47 1= 0jN+10p NV =1 (4,5) # (7', §').
Other commutation relations are zero. In what follows we use the standard
symbol of the normal orderings ::. It is convenient to introduce the gen-
erating function b%7(z2),c™ (z), b3 (2),a’.(z) and (% R ai) (z]a) given
by

z7™m 4 QZ’j + bé’jlogz,

Wi = -3 o

m#£0 [m q
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274 Qi’j + cé’jlogz,

m;éD
b (z) = £(@—q¢7 Z b= £ by logg,
+m>0
ai(z) = +(¢g—q° Z al z7™+ a%logq,
+m>0
71 Tr z) (Z|Oé) _ ['Ylm]q e ['Wm]q ain —alm|,—m
. = — q z
(61 B?’ mzyé:() [/Blm] T [Brm]q [m]q
Y-
+ '+ allogz
8- B (Q ologz).

In order to avoid divergence we work on the Fock space defined below. We
introduce the vacuum state |0) # 0 of the boson Fock space by

ay,|0) = b 0) = ¢ [0) = 0 (m > 0).

Forp, e C1<i<N),p’eCl<i<j<N+1),pidecC
(1<i<j<N), weset

N Min(4,5) (N —1—Max(4,5)) Qu.

|pa7pbapc> = 6213]‘ 1 (N—1)(k+N—1)

0,5 yiJ i3 ~ird
X 6_21§i<j§N+1pb Qb +21§i<jSNpc Qc ’0)
It satisfies

ad|Pas Pbs Pe) = PalPas Pbs Pe)s
b6 |Pas Pbs Pe) = Dy [Pas Pbs De)s €5’ [Pas Dby Pe) = D2 |Pas Db, De)-

The boson Fock space F(pq, pp, pe) is generated by the bosons at,, b ¢t
on the vector |pg, pp, pc). We set the space F(pg) by

Fp)= @ Fluppo).
pyl=—pil ez (1<i<j<N)
péaN“ez (1<i<N)

We impose the restriction p, HEp =-—piJ €Z (1 <i<j<N). We construct
a bosonization on the space F(pa).

Theorem 3.4 [2] A bosonization of the quantum superalgebra Uq(SAl(N|1))
for an arbitrary level k € C is given as follows.

c = keC,
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N
_ a0+z bl i+1 bé’z) + Z (bgl _bg—‘rl,l) +b6,N+1 —b6+1’N+1’

l=i+1
N-1
— N I,N [,N+1
= ay — Z (bo + b )
=1

_ _ N— 1|m|az + Z +l 1) \m\bl i+1 qf(ngl)\m\b%)

N
+ ¥ (g~ FDImlpil _ = (G+H=Dmlpi+1l)
l=i+1

(kg T (kyN-1 T1,N+1
q (3 N)|m|b';;11\] 1 (5+N )\m\b;n , 7

—q
Nl N NS DImpN L (kD) N
= q 7 maly = (g I 4 g HImIpE V)

=1
- < 11) L3 bl ) IR e - 0 )
q—dq T
7j=1

[T ) P @0l Y

*

N
o : - .
_ :Ze(b+c)]’N(qj_1z)+bJ’N+1(qj L)Y 0T N T (gl e) 40N (g12)) :

(=g ")z
B (D DTN i U R Al ()

(e*bii(q—k—mf(b+c>j’i<q—k—f+1z> - e*bi’"(q—k—jz>f(b+c>f’i<q—k—f—1z>)

k3

. k+N-1 . )
I N O KA R

N
B I e B (e ) (AR CRUR )

X
Lk (q T T (b L (g )
« ezl]\;i_‘rl(bil(qkwtlz)ibijl,l(qk+l712))+biN+1(qk+NZ)7bi+l,N+1(qk+N712)
_ Zl (g ) () ()
j=i+1
o TN ) N N T L ST 0 (g )b (g4 12)
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% (ebi:-l,j-ﬁ-l(qk+jz)_(b+c)i+1,j+l(qk+j+1z) - ebi+1’j+1(qurjz)—(b-‘rC)iJrl‘jJrl(qk+j712)>} .
N—1 _k+N-1 : .y . .
ry(z) = e O D A b C B i e )
(q -9 )Z j=1
DD DA G Ut R e U O)
X qa—l (e—bi’N<q+ﬂ'z>—<b+c)ﬂ>N<q*k*jflz> - e—bj;N(q*k*jz)—<b+c>j>N<q*k*j+1z)>} :

k+N 12) bNN+1(qk+N 1 ) aN(qIM;lz)bN,N+1(qu+1z)> .

— e -

+ ¢V <eaﬁ(q

3.3. Replacement from U,(sl(N]|1)) to Uq(sAl(N|1))

In this section we study the relation between U, (sl(N|1)) and U, ( [(N]1)).
Let us recall the Heisenberg realization of quantum superalgebra U (sl(N]1))
[1]. We introduce the coordinates x; ;, (1 <i < j < N +1) by

R ¥ (1<i<j<N),
o _{ fij (1<i<N,j=N+1). (3..1)

Here z; j are complex variables and 6; y11 are the Grassmann odd variables
that satisfy 0i,N+10i,N+1 =0 and 6i,N+19j,N+1 = — j,N+10i,N+17 (Z 7é j)
We introduce the differential operators ¥; ; = xi’j%, (1<i<j<N+1).

Theorem 3.5 [1] We fix parameters \; € C (1 < i < N). The Heisenberg
realization of Uy(sl(N|1)) is given as follows.

i—1 N

hi = > (i —vig1V01) + X — (W vie)Viier + Y (Vi Oig1ja1 — Vidije1),
j=1 Jj=i+1
i .
Tis j—1
7, 19— 97
e; = [ﬁj,i-i-l]q qzlzl(% 1i—Vit1l l,7.+1)7
j=1 Lji+1
1—1 .
Xii i—1 ) 9 ) — D\ 4, . N+l 9 )
fi = ZVi ],l'-ijl [ﬂj,i]qqu:jJrl(l/1+119l7l+1 vids) =it (vitvig) Vit (it —vig1Piga )
J 1 ajjvz
N+1
+ i1 | N — Vit — Z (vivig — vig10i41,)
l=i+2 q
N+1
CTig+1 Xt i Wi Ui —vidig)
- Z Vit [Pit1,5+1lqa”™ Zajn Vi deni=vidi)
j=itl xz+1,g+1

Here we read x;; = 1 and, for Grassmann odd variables x; ;, the expression

stands for the derivative L= 88- -
Ti,j Ti,j

Ti,j
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We study how to recover the bosonization of the affine superalgebra

Uq(gl(N|1)) from the Heisenberg realization of Uy (sl(N|1)). We make the
following replacement with suitable argument.

Vij — —bP(2)/logg  (1<i<j<N+1),

b0 (2) b (2)
e+ — € 1
N+1
[Wijle — { (g—q ')z (]. P,
B (2) | (G#N+1
ie N J#N+1),
Tij; — { bivd (2) or e_le(qilz)—bi,j(z) : (] =N+ 1)

N — di(2)/logg (1<i<N),
+a® (z) _ _+a® (2)
g — - °

(g—q ")z L=r=i).

From the above replacement, the element h; of the Heisenberg realization
is replaced as following.

h; eai(z)-i-Z;ﬂ(bl’Hl( )by (2) +ZZNH-1 b (2)—b5 (=) (1<i<N-1),
" — oY ()= O () + N () (i=N).

We impose ¢-shift to variable z of the operators a_(z), b3 (). For instance,

we have to replace a’, (z) — a’(¢F = z). Bridging the gap by the ¢-shift,

we have the bosonizations ¥ (¢%22) € Uq(.;l(N|1)) from ¢"i € U,(sl(N|1)).

. c+N-1 i i o . .
Ui (g*ez) = Q@ 2 2y (T (e D) bl (¢ ))
N i i B i . )
) e B D) (D 2 (N 2) N (N )
4 c L+N 1 N-1 . , .
@Z’N( i) = eag( 2) =S O (gD 2) b N T (g +z)z)).

In this replacement, one element g™ goes to two elements @ZJ;JE (qigz). Hence
this replacement is not a map. Replacements from e;, f; to :Uli(z) are given
by similar way, however they are more complicated. See details in [2].

3.4. Wakimoto Realization

In this section we give the Wakimoto realization F(p,) whose character
coincides with those of the Verma module [14]. We introduce the operators

¢ and bl (1<i<j<N,méeZ)by

Z nhd zmm=l = ) L E(2) = Z Eod ™™ = e

meZ meZ
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The Fourier components n’/ = ¢ o Fzmnw( 2), €L = ¢ %%melfi’j(z)

(m € Z) are Well defined on the space F(p,). We focus our attention on

the operators n;”, 07] satisfying (n57)? = 0, (£,7)% = 0. They satisfy
Im(’ﬂé’j) _ Ker(néﬂj% Im(ﬁé’j) _ Ker({é’]) 770450,] + §D,J 0 _ -1

We have a direct sum decomposition.
F(pa) = 0’ €57 F(pa) ® &7 ng” F (p )
Ker(n") = 1577 F(pa), Coker(ny?) = &57n5” F(pa) = F(pa)/(5” €67) F (pa)-

We set the operator 19, &y by

m= [ =’ &= ][] &’

1<i<j<N 1<i<j<N
Definition 3.6 [14] We introduce the subspace F(ps) by

F(pa) = n0&oF (Pa)-

We call F(p,) the Wakimoto realization.

4. Screening and Vertex Operator

In this section we give the screening that commutes with the quantum

superalgebra Uq(sAl (N|1)). We propose the vertex operators and the corre-
lation functions.

4.1. Screening

In this section we give the screening Q; (1 < i < N) that commutes with

the quantum superalgebra Uq(sAl(N |1)) for an arbitrary level k # —N + 1
[15]. The Jackson integral with parameter p € C (|p| < 1) and s € C* is
defined by

le e}
/ f(2)dpz = s(1—p) > f(sp™)p™
0 meZ
In order to avoid divergence we work in the Fock space.

Theorem 4.1 [15] The screening Q; commutes with the quantum super-
algebra.

Qi Uy(sl(N[1) =0 (1<i<N).
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We have introduced the screening operators Q; (1 <i < N) as follows.

Q’i = /SOO N 6_(k+1{[*1ai)(zyk+g_l )gl(z) : de, (p — q2(k+N_1))
0

Here we have set the bosonic operators §Z(z) (1<i<N) by
1 N y _ - v i , . ,
Si(z) = ——— 3 (et efb#(qN*Hz)f(b+c)w(qN*Hz))
(q —q )Z j=i+1
x eI (N TS T 0 (N T )bl (N T L) b () b h M (g )

+ g ebi,NJ,-l(Z)+bi+l,N+l(Z)_bi+1,N+l(qz) . (1 <i< N = 1)

gN(z) = —q¢ FARSNON

4.2. Vertex Operator

In this section we introduce the vertex operators ®(z), ®*(z) [15]. Let F
and F' be Uq(sAl(N| 1)) representation for an arbitrary level k ## —N+1. Let
Vo and V S be 2N_-dimensional typical representation with a parameters a
[21]. Let {Uﬁ?il be the basis of V,. Let {v} 321 be the dual basis of
Vo’fs, satisfying (v@]v;) = 0;,;. Let V, . and V;§ be the evaluation module
and its dual of the typical representation. For instance, the 8-dimensional
representation Vj, , of Uq(sAl(3|1)) is given by

hi = E33— Ey4+ E55— Egg,

ho = FEs92— E33+ Egpg — Er7,

hs = a(B11+ Ea2)+ (a+1)(E33+ Eyg+ Es5 + Eeg) + (o +2)(Er7 + Esg),
er = K34+ Esg,

e = FEo3+ Eg7,

ez = \/@El,z — /o +1]4(Es35 + Eyp) + /[ + 2]gE7 g,

fi = FEs3+ Egs,
fo = K32+ Erg,

fs = \MEZI — /o +1g(Es 3+ Esa) + /o + 2] Es 7,

ho = —a(E11+ Eya) — (a+1)(Eoo+ Ezz+ Eee + Evr) — (o +2)(Es5 + Egg),

ey = —Z(\/@EzLJ — \/m<E6,2 + E7,3) + mE&5>v
fo = Z_l(\/EElA — \/M(Eéﬁ + E3,7) + mE5,S)'
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Consider the following intertwiners of U, (sl(N|1))-representation [20].
P(2): F—F @V, O :):F—F® V;’S.

They are intertwiners in the sense that for any x € Uq(SAl(N|1)),
O(2) - z=A(z) D(2), P (2)-z=A(x) D*(2).

We expand the intertwining operators.
2N 2N
D(2) :Z<I>j(z)®vj, d*(2) :Z(I);f(z)(gv;f.
j=1 j=1

We set the Zs-grading of the intertwiner be |®(z)| = |®*(z)| = 0. For
lo= (11,12, IV) € CN and B € C, we set the bosonic operator ¢'s(z|3)
by

N ) Min(i,j) N—1—Max(i,j) j
Zi,j:1(k+ﬁf—1 N-1 1 o’ (ZW),

¢ (2|8) =t e

In order to balance thegbackground chargeh of the vertex operators, we
introduce the product of the screenings Q) for t = (t1,to,---,ty) € NV.

o) — Qtll Q§2 . Q?\JTV_
The screening operator Q®) give rise to the map,
Q" : F(pa) = Flpa +1).
Here ¢ = (fl,fg, e ,fN) where t; = Z;V:l A; jtj.

Theorem 4.2 [15] Fork =a«a # 0,—1,-2,---,—N + 1, bosonizations of
the special components of the vertex operators ®1(z) and ®*)(z) are given
by

P _ E+N-—-1
(I)étgf (Z) = Q(t)¢l (qk+N 12 - 2 ) 9
. i k+N—1
#0() = Q0 (2] -FE )

~

where we have used | = —(0,---,0,a + N — 1), I* = (0,---,0,) and
t = (t1,ta,---,tn) € NN, The other components <I>§~t)(z) and @;(t) () (1<

§ < 2N) are determined by the intertwining property and are represented by
multiple contour integrals of Drinfeld currents and the special components

<I>(2t]2,(z) and @’{(t)(z). We have checked this theorem for N = 2,3,4.
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Here we give additional explanation on the above theorem. The explicit for-
mulae of the intertwining properties ®)(2)-2 = A(z)-®®(2) for U, (sl(3/1))
are summarized as follows. We have set the Zs-grading of V,, as follows :

1] = [vs| = |v6] = [v7| = 0, and |va| = [va| = [va| = |vs| = 1.

of)(z) = [0(2), filg, @V (2) = [0 (2). fila.

ol (z) = [0 (2), folg, () = [@%‘* (2), folas

20(z) = (8P, filyer BP(2) = 1 (8P (2), fy]et,
[a]q [+ 1]

P(x) = ——— @), falyams, 80(2) = (8P (2), fi),om
[a +1]4 [a + 2],

The elements f; are written by contour integral of the Drinfeld current f; =

$ 27rCi%asj_(w). Hence the components <I>§-t) (1 < j < 8) are represented by

multiple contour integrals of Drinfeld currents x; (w) (1 < j < 3) and the

special component @ét) (2).

4.3. Correlation Function

In this section we study the correlation function as an application of the
vertex operators . We study non-vanishing property of the correlation
function which is defined to be the trace of the vertex operators over the

Wakimoto module of Uq(SAl(N |1)). We propose the g-Virasoro operator L
for k = a # —N + 1 as follows.

*ZZ

1,7=1meZ

Min(z, j)(N — 1 — Max(i, j)) ;
+Z k+N—DN-1) 0

Mm(z J)m]g[(N —1— Max(i,j))m]qaj )
mlgl(k+ N = 1)m]g[(N — 1)m]g[m]y ™"

i,5=1
1 D b,a m’ bm.+l D IRE:
2 2
1<i<j<N m€eZ 1<z<]<N meZ
m N+1
+ DD IE b”V+1 bZN“ + S ovg
1<z<N meZ 1<Z<N

The Lg eigenvalue of |l,,0,0) is W(X\%ﬂp), where 5 = YN, A; and
A=Y 1A,

Theorem 4.3 [15] For k = a # 0,—1,-2,---,—N + 1, the correlation
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function of the vertex operators,

tm, J1 In

Trr ) (q%:fy“)’(wl) o) T (4 <I>‘-””<">’<zn>) £0,

if and only if (s = (T(s)1,T(s),2," "> T(s),N) € NV (1 < s < n) and

Us) = W) U2 Ys ) € NV (1 <'s < m) satisfy the following
condition.

Zx(s)»i+zy(s),i:wa+n-i (1<i<N).
s=1 s=1
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