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Abstract

We give a bosonization of the quantum affine superalgebra Uq(ŝl(N |1)) for an
arbitrary level k ∈ C. The bosonization of level k ∈ C is completely different
from those of level k = 1. From this bosonization, we induce the Wakimoto
realization whose character coincides with those of the Verma module. We give

the screening that commute with Uq(ŝl(N |1)). Using this screening, we propose
the vertex operator that is the intertwiner among the Wakimoto realization and
typical realization. We study non-vanishing property of the correlation function
defined by a trace of the vertex operators.
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1. Introduction

Bosonizations provide a powerful method to construct correlation function
of exactly solvable models. We construct a bosonization of the quantum
affine superalgebra Uq(ŝl(N |1)) (N ≥ 2) for an arbitrary level k ∈ C [1, 2].
For the special level k = 1, bosonizations have been constructed for the

quantum affine algebra Uq(g) in many cases g = (ADE)(r), (BC)(1), G
(1)
2 ,

ŝl(M |N), osp(2|2)(2) [3, 4, 5, 6, 7, 8, 9, 10]. Bosonizations of level k ∈ C are
completely different from those of level k = 1. For an arbitrary level k ∈ C
bosonizations have been studied only for Uq(ŝlN ) [11, 12] and Uq(ŝl(N |1))
[1, 2]. Our construction is based on the ghost-boson system. We need
more consideration to get the Wakimoto realization whose character co-
incides with those of the Verma module. Using ξ-η system we construct
the Wakimoto realization [13, 14] from our level k bosonization. For an
arbitrary level k 6= −N + 1 we construct the screening current that com-
mutes with Uq(ŝl(N |1)) modulo total difference. By using Jackson integral
and the screening current, we construct the screening that commute with
Uq(ŝl(N |1)) [13, 15]. We propose the vertex operator that is the inter-
twiner among the Wakimoto realization and typical realization. By using
the Gelfand-Zetlin basis, we have checked the intertwining property of the
vertex operator for rank N = 2, 3, 4 [15]. We balance the background charge
of the vertex operator by using the screening and propose the correlation
function by a trace of them, which gives quantum and super generalization
of Dotsenko-Fateev theory [16].

The paper is organized as follows. In section 2 we review bosonizations
of Uq(ŝl2). In section 3 we construct a bosonization of Uq(ŝl(N |1)) for an
arbitrary level k ∈ C. We induce the Wakimoto realization by ξ-η system.
In section 4 we construct the screening that commute with Uq(ŝl(N |1)) for
an arbitrary level k 6= −N + 1. We propose the vertex operator and the
correlation function.

2. Bosonization : Level k = 1 vs. Level k ∈ C

In this section we review the bosonization of the quantum affine algebra
Uq(ŝl2). The purpose of this section is to make readers understand that the
bosonization of level k ∈ C is complete different from those of level k = 1.
In what follows let q be a generic complex number 0 < |q| < 1. We use the
standard q-integer notation :

[m]q =
qm − q−m

q − q−1
.

First we recall the definition of Uq(ŝl2). We recall the Drinfeld realization

of the quantum affine algebra Uq(ŝl2).

Definition 2.1 [17] The generators of the quantum affine algebra Uq(ŝl2)
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are x±i,n, hm, h, c (n ∈ Z,m ∈ Z6=0). Defining relations are

c : central, [h, hm] = 0,

[hm, hn] = δm+n,0
[2m]q[cm]q

m
,

[h, x±(z)] = ±2x±(z),

[hm, x
±(z)] = ± [2m]q

m
q∓

c|m|
2 zmx±(z),

(z1 − q±2z2)x±(z1)x
±(z2) = (q±2z1 − z2)x±(z2)x

±(z1),

[x+(z1), x
−(z2)] =

1

(q − q−1)z1z2
×

(
δ(q−cz1/z2)ψ

+(q
c
2 z2)− δ(qcz1/z2)ψ−(q−

c
2 z2)

)
.

where we have used δ(z) =
∑
n∈Z z

n. We have set the generating function

x±(z) =
∑
n∈Z

x±n z
−n−1,

ψ±(q±
c
2 z) = q±he±(q−q

−1)
∑

m>0
h±mz∓m .

When the center c takes the complex number c = k ∈ C, we call it the
level k representation. We call the realization by the differential operators
the bosonization. Frenkel-Jing [3] constructed the level k = 1 bosonization

of the quantum affine algebra Uq(g) for simply-laced g = (ADE)(1). Here

we recall the level k = 1 bosonization of Uq(ŝl2). We introduce the boson
an (n ∈ Z6=0) and the zero-mode operator ∂, α by

[am, an] =
[2m]q[m]q

m
δm+n,0, [∂, α] = 2.

In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.2 [3] A bosonization of the quantum affine algebra Uq(ŝl2)
for the level k = 1 is given as follows.

c = 1, h = ∂, hn = an,

x±(z) =: e
∓
∑

n 6=0
an
[n]q

q∓
n
2 z−n±(α+∂)

: .

We have used the normal ordering symbol ::

: akal :=

{
akal (k < 0),
alak (k > 0),

: α∂ :=: ∂α := α∂.
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Next we recall the level k bosonization of the quantum affine algebra
Uq(ŝl2) [11]. We introduce the bosons and the zero-mode operator an, bn, cn,
Qa, Qb, Qc (n ∈ Z) as follows.

[am, an] = δm+n,0
[2m]q[(k + 2)m]q

m
, [ã0, Qa] = 2(k + 2),

[bm, bn] = −δm+n,0
[2m]q[2m]q

m
, [b̃0, Qb] = −4,

[cm, cn] = δm+n
[2m]q[2m]q

m
, [c̃0, Qc] = 4,

where ã0 = q−q−1

2logq a0, b̃0 = q−q−1

2logq b0, c̃0 = q−q−1

2logq c0. It is convenient to

introduce the generating function a(N |z;α).

a(N |z;α) = −
∑
n6=0

an
[Nn]q

q|n|αz−n +
ã0
N

logz +
Qa
N
.

In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.3 [11] A bosonization of the quantum affine algebra Uq(ŝl2)
for the level k ∈ C is given as follows.

c = k ∈ C, h = a0 + b0,

hm = q2m−|m|am + q(k+2)m− k+2
2
|m|bm,

x+(z) =
−1

(q − q−1)z

(
: e−b(2|q

−k−2z;1)−c(2|q−k−1z;0) :

− : e−b(2|q
−k−2z;1)−c(2|q−k−3z;0) :

)
,

x−(z) =
1

(q − q−1)z

(
: ea(k+2|qkz,− k+2

2
)−a(k+2|q−2z; k+2

2
)+b(2|z;−1)+c(2|q−1z;0) :

− : ea(k+2|q−k−4z;− k+2
2

)−a(k+2|q−2z; k+2
2

)+b(2|q−2k−4z;−1)+c(2|q−2k−3z;0) :
)
.

The level k = 1 bosonization is given by ”monomial”. The level k ∈ C
bosonization is given by ”sum”. They are completely different.

3. Bosonization of Quantum Superalgebra Uq(ŝl(N |1))
In this section we study the bosonization of the quantum superalgebra
Uq(ŝl(N |1)) for an arbitrary level k ∈ C.
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3.1. Quantum Superalgebra Uq(ŝl(N |1))

In this section we recall the definition of the quantum superalgebra Uq(ŝl(N |1)).
We fix a generic complex number q such that 0 < |q| < 1. The Cartan ma-

trix (Ai,j)0≤i,j≤N of the affine Lie algebra ŝl(N |1) is given by

Ai,j = (νi + νi+1)δi,j − νiδi,j+1 − νi+1δi+1,j .

Here we set ν1 = · · · = νN = +, νN+1 = ν0 = −. We introduce the
orthonormal basis {εi|i = 1, 2, · · · , N + 1} with the bilinear form, (εi|εj) =

νiδi,j . Define ε̄i = εi − νi
N−1

∑N+1
j=1 εj . Note that

∑N
j=1 ε̄j = 0. The classical

simple roots ᾱi and the classical fundamental weights Λ̄i are defined by
ᾱi = νiεi − νi+1εi+1, Λ̄i =

∑i
j=1 ε̄j (1 ≤ i ≤ N). Introduce the affine

weight Λ0 and the null root δ satisfying (Λ0|Λ0) = (δ|δ) = 0, (Λ0|δ) = 1,
(Λ0|εi) = 0, (δ|εi) = 0, (1 ≤ i ≤ N). The other affine weights and the affine

roots are given by α0 = δ −
∑N
j=1 ᾱj , αi = ᾱi, Λi = Λ̄i + Λ0, (1 ≤ i ≤ N).

Let P = ⊕Nj=1ZΛj ⊕ Zδ and P ∗ = ⊕Nj=1Zhj ⊕ Zd the affine ŝl(N |1) weight
lattice and its dual lattice, respectively.

Definition 3.1 [18] The quantum affine superalgebra Uq(ŝl(N |1)) are
generated by the generators hi, ei, fi (0 ≤ i ≤ N). The Z2-grading of the
generators are |e0| = |f0| = |eN | = |fN | = 1 and zero otherwise. The
defining relations are given as follows.
The Cartan-Kac relations : For N ≥ 2, 0 ≤ i, j ≤ N , the generators
subject to the following relations.

[hi, hj ] = 0, [hi, ej ] = Ai,jej , [hi, fj ] = −Ai,jfj , [ei, fj ] = δi,j
qhi − q−hi
q − q−1

.

The Serre relations : For N ≥ 2, the generators subject to the following
relations for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N such that |Ai,j | = 1.

[ei, [ei, ej ]q−1 ]q = 0, [fi, [fi, fj ]q−1 ]q = 0.

For N ≥ 2, the generators subject to the following relations for 0 ≤ i, j ≤ N
such that |Ai,j | = 0.

[ei, ej ] = 0, [fi, fj ] = 0.

For N ≥ 3, the Serre relations of fourth degree hold.

[eN , [e0, [eN , eN−1]q−1 ]q] = 0, [e0, [e1, [e0, eN ]q]q−1 ] = 0,
[fN , [f0, [fN , fN−1]q−1 ]q] = 0, [f0, [f1, [f0, fN ]q]q−1 ] = 0.

For N = 2, the extra Serre relations of fifth degree hold.

[e2, [e0, [e2, [e0, e1]q]]]q−1 = [e0, [e2, [e0, [e2, e1]q]]]q−1 ,
[f2, [f0, [f2, [f0, f1]q]]]q−1 = [f0, [f2, [f0, [f2, f1]q]]]q−1 .
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Here and throughout this paper, we use the notations

[X,Y ]ξ = XY − (−1)|X||Y |ξY X.

We write [X,Y ]1 as [X,Y ] for simplicity.

The quantum affine superalgebra Uq(ŝl(N |1)) has the Z2-graded Hopf-
algebra structure. We take the following coproduct

∆(ei) = ei ⊗ 1 + qhi ⊗ ei, ∆(fi) = fi ⊗ q−hi + 1⊗ fi, ∆(hi) = hi ⊗ 1 + 1⊗ hi,

and the antipode

S(ei) = −q−hiei, S(fi) = −fiqhi , S(hi) = −hi.

The coproduct ∆ satisfies an algebra automorphism ∆(XY ) = ∆(X)∆(Y )
and the antipode S satisfies a Z2-graded algebra anti-automorphism S(XY ) =

(−1)|X||Y |S(Y )S(X). The multiplication rule for the tensor product is Z2-

graded and is defined for homogeneous elements X,Y,X ′, Y ′ ∈ Uq(ŝl(N |1))

and v ∈ V,w ∈ W by X ⊗ Y · X ′ ⊗ Y ′ = (−1)|Y ||X
′|XX ′ ⊗ Y Y ′ and

X ⊗ Y · v ⊗ w = (−1)|Y ||v|Xv ⊗ Y w, which extends to inhomogeneous
elements through linearity.

Definition 3.2 The quantum superalgebra Uq(ŝl(N |1)) is the subalge-

bra of Uq(ŝl(N |1)), that is generated by e1, e2, · · · , eN , f1, f2, · · · , fN , and
h1, h2, · · · , hN .

We recall the Drinfeld realization of Uq(ŝl(N |1)), that is convenient to
construct bosonizations.

Definition 3.3 [18] The generators of the quantum superalgebra Uq(ŝl(N |1))
are x±i,n, hi,m, h, c (1 ≤ i ≤ N,n ∈ Z,m ∈ Z6=0). Defining relations are

c : central, [hi, hj,m] = 0,

[hi,m, hj,n] =
[Ai,jm]q[cm]q

m
q−c|m|δm+n,0,

[hi, x
±
j (z)] = ±Ai,jx±j (z),

[hi,m, x
+
j (z)] =

[Ai,jm]q
m

q−c|m|zmx+j (z),

[hi,m, x
−
j (z)] = − [Ai,jm]q

m
zmx−j (z),

(z1 − q±Ai,jz2)x±i (z1)x
±
j (z2) = (q±Aj,iz1 − z2)x±j (z2)x

±
i (z1) for |Ai,j | 6= 0,

[x±i (z1), x
±
j (z2)] = 0 for |Ai,j | = 0,

[x+i (z1), x
−
j (z2)] =

δi,j
(q − q−1)z1z2

(
δ(q−cz1/z2)ψ

+
i (q

c
2 z2)− δ(qcz1/z2)ψ−i (q−

c
2 z2)

)
,
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(
x±i (z1)x

±
i (z2)x

±
j (z)− (q + q−1)x±i (z1)x

±
j (z)x±i (z2) + x±j (z)x±i (z1)x

±
i (z2)

)
+ (z1 ↔ z2) = 0 for |Ai,j | = 1, i 6= N,

where we have used δ(z) =
∑
m∈Z z

m. Here we have used the generating
function

x±j (z) =
∑
m∈Z

x±j,mz
−m−1,

ψ±i (q±
c
2 z) = q±hie±(q−q

−1)
∑

m>0
hi,±mz∓m .

The relation between two definitions of Uq(ŝl(N |1)) are given by

h0 = c− (h1 + · · ·+ hN ), ei = x+i,0, fi = x−i,0 for 1 ≤ i ≤ N,

e0 = (−1)[x−N,0 · · · , [x
−
3,0, [x

−
2,0, x

−
1,1]q−1 ]q−1 · · ·]q−1q−h1−h2−···−hN ,

f0 = qh1+h2+···+hN [· · · [[x+1,−1, x
+
2,0]q, x

+
3,0]q, · · ·x

+
N,0]q.

For instance we have the coproduct as follows.

∆(hi,m) = hi,m ⊗ q
cm
2 + q

3cm
2 ⊗ hi,m (m > 0),

∆(hi,−m) = hi,−m ⊗ q−
3cm
2 + q−

cm
2 ⊗ hi,−m (m > 0).

3.2. Bosonization

In this section we construct bosonizations of quantum superalgebra Uq(ŝl(N |1))
for an arbitrary level k ∈ C [2]. We introduce the bosons and the zero-mode

operators ajm, Q
j
a (m ∈ Z, 1 ≤ j ≤ N), bi,jm , Q

i,j
b (m ∈ Z, 1 ≤ i < j ≤ N+1),

ci,jm , Q
i,j
c (m ∈ Z, 1 ≤ i < j ≤ N) which satisfy

[aim, a
j
n] =

[(k +N − 1)m]q[Ai,jm]q
m

δm+n,0, [ai0, Q
j
a] = (k +N − 1)Ai,j ,

[bi,jm , b
i′,j′
n ] = −νiνj

[m]2q
m

δi,i′δj,j′δm+n,0, [bi,j0 , Q
i′,j′

b ] = −νiνjδi,i′δj,j′ ,

[ci,jm , c
i′,j′
n ] =

[m]2q
m

δi,i′δj,j′δm+n,0, [ci,j0 , Q
i′,j′
c ] = δi,i′δj,j′ ,

[Qi,jb , Q
i′,j′

b ] = δj,N+1δj′,N+1π
√
−1 (i, j) 6= (i′, j′).

Other commutation relations are zero. In what follows we use the standard
symbol of the normal orderings ::. It is convenient to introduce the gen-

erating function bi,j(z), ci,j(z), bi,j± (z), aj±(z) and
(
γ1
β1
· · · γrβr a

i
)

(z|α) given

by

bi,j(z) = −
∑
m 6=0

bi,jm
[m]q

z−m +Qi,jb + bi,j0 logz,
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ci,j(z) = −
∑
m 6=0

ci,jm
[m]q

z−m +Qi,jc + ci,j0 logz,

bi,j± (z) = ±(q − q−1)
∑
±m>0

bi,jm z
−m ± bi,j0 logq,

aj±(z) = ±(q − q−1)
∑
±m>0

ajmz
−m ± aj0logq,

(
γ1
β1
· · · γr

βr
ai
)

(z|α) = −
∑
m 6=0

[γ1m]q · · · [γrm]q
[β1m]q · · · [βrm]q

aim
[m]q

q−α|m|z−m

+
γ1 · · · γr
β1 · · ·βr

(Qia + ai0logz).

In order to avoid divergence we work on the Fock space defined below. We
introduce the vacuum state |0〉 6= 0 of the boson Fock space by

aim|0〉 = bi,jm |0〉 = ci,jm |0〉 = 0 (m ≥ 0).

For pia ∈ C (1 ≤ i ≤ N), pi,jb ∈ C (1 ≤ i < j ≤ N + 1), pi,jc ∈ C
(1 ≤ i < j ≤ N), we set

|pa, pb, pc〉 = e
∑N

i,j=1

Min(i,j)(N−1−Max(i,j))
(N−1)(k+N−1)

piaQ
j
a

× e
−
∑

1≤i<j≤N+1
pi,j
b
Qi,j
b

+
∑

1≤i<j≤N pi,jc Qi,jc |0〉.

It satisfies

ai0|pa, pb, pc〉 = pia|pa, pb, pc〉,
bi,j0 |pa, pb, pc〉 = pi,jb |pa, pb, pc〉, c

i,j
0 |pa, pb, pc〉 = pi,jc |pa, pb, pc〉.

The boson Fock space F (pa, pb, pc) is generated by the bosons aim, b
i,j
m , c

i,j
m

on the vector |pa, pb, pc〉. We set the space F (pa) by

F (pa) =
⊕

p
i,j
b

=−pi,jc ∈Z (1≤i<j≤N)

p
i,N+1
b

∈Z (1≤i≤N)

F (pa, pb, pc).

We impose the restriction pi,jb = −pi,jc ∈ Z (1 ≤ i < j ≤ N). We construct
a bosonization on the space F (pa).

Theorem 3.4 [2] A bosonization of the quantum superalgebra Uq(ŝl(N |1))
for an arbitrary level k ∈ C is given as follows.

c = k ∈ C,
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hi = ai0 +
i∑
l=1

(bl,i+1
0 − bl,i0 ) +

N∑
l=i+1

(bi,l0 − b
i+1,l
0 ) + bi,N+1

0 − bi+1,N+1
0 ,

hN = aN0 −
N−1∑
l=1

(bl,N0 + bl,N+1
0 ),

hi,m = q−
N−1

2
|m|aim +

i∑
l=1

(q−(
k
2
+l−1)|m|bl,i+1

m − q−(
k
2
+l)|m|bl,im)

+
N∑

l=i+1

(q−(
k
2
+l)|m|bi,lm − q−(

k
2
+l−1)|m|bi+1,l

m )

+ q−(
k
2
+N)|m|bi,N+1

m − q−(
k
2
+N−1)|m|bi+1,N+1

m ,

hN,m = q−
N−1

2
|m|aNm −

N−1∑
l=1

(q−(
k
2
+l)|m|bl,Nm + q−(

k
2
+l)|m|bl,N+1

m ),

x+i (z) =
1

(q − q−1)z
:

i∑
j=1

e(b+c)
j,i(qj−1z)+

∑j−1

l=1
(bl,i+1

+ (ql−1z)−bl,i+ (qlz)) ×

×
{
eb
j,i+1
+ (qj−1z)−(b+c)j,i+1(qjz) − eb

j,i+1
− (qj−1z)−(b+c)j,i+1(qj−2z)

}
:,

x+N (z) = :
N∑
j=1

e(b+c)
j,N (qj−1z)+bj,N+1(qj−1z)−

∑j−1

l=1
(bl,N+1

+ (qlz)+bl,N+ (qlz)) :,

x−i (z) = qk+N−1 : ea
i
+(q

k+N−1
2 z)−bi,N+1(qk+N−1z)−bi+1,N+1

+ (qk+N−1z)+bi+1,N+1(qk+Nz) :

+
1

(q − q−1)z
:


i−1∑
j=1

ea
i
−(q
− k+N−1

2 z)+(b+c)j,i+1(q−k−jz)+bi,n+1
− (q−k−nz)−bi+1,n+1

− (q−k−n+1z)

× e
∑i

l=j+1
(bl,i+1
− (q−k−l+1z)−bl,i− (q−k−lz))+

∑N

l=i+1
(bi,l− (q−k−lz)−bi+1,l

− (q−k−l+1z))

×
(
e−b

j,i
− (q−k−jz)−(b+c)j,i(q−k−j+1z) − e−b

j,i
+ (q−k−jz)−(b+c)j,i(q−k−j−1z)

)
+ ea

i
−(q
− k+N−1

2 z)+(b+c)i,i+1(q−k−iz)

× e
∑N

l=i+1
(bi,l− (q−k−lz)−bi+1,l

− (q−k−l+1z))+bi,N+1
− (q−k−Nz)−bi+1,N+1

− (q−k−N+1z)

− ea
i
+(q

k+N−1
2 z)+(b+c)i,i+1(qk+iz)

× e
∑N

l=i+1
(bi,l+ (qk+lz)−bi+1,l

+ (qk+l−1z))+bi,N+1
+ (qk+Nz)−bi+1,N+1

+ (qk+N−1z)

−
N−1∑
j=i+1

ea
i
+(q

k+N−1
2 z)+(b+c)i,j+1(qk+jz)

× e
bi,N+1
+ (qk+Nz)−bi+1,N+1

+ (qk+N−1z)+
∑N

l=j+1
(bi,l+ (qk+lz)−bi+1,l

+ (qk+l−1z))
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×
(
eb
i+1,j+1
+ (qk+jz)−(b+c)i+1,j+1(qk+j+1z) − eb

i+1,j+1
− (qk+jz)−(b+c)i+1,j+1(qk+j−1z)

)}
: .

x−N (z) =
1

(q − q−1)z
:


N−1∑
j=1

ea
N
− (q−

k+N−1
2 z)−bj,N+1

+ (q−k−jz)−bj,N+1(q−k−j−1z)

× e
−
∑N−1

l=j+1
(bl,N− (q−k−lz)+bl,N+1

− (q−k−lz))

× qj−1
(
e−b

j,N
+ (q−k−jz)−(b+c)j,N (q−k−j−1z) − e−b

j,N
− (q−k−jz)−(b+c)j,N (q−k−j+1z)

)}
:

+ qN−1 :

(
ea
N
+ (q

k+N−1
2 z)−bN,N+1(qk+N−1z) − eaN− (q−

k+N−1
2 z)−bN,N+1(q−k−N+1z)

)
: .

3.3. Replacement from Uq(sl(N |1)) to Uq(ŝl(N |1))

In this section we study the relation between Uq(sl(N |1)) and Uq(ŝl(N |1)).
Let us recall the Heisenberg realization of quantum superalgebra Uq(sl(N |1))
[1]. We introduce the coordinates xi,j , (1 ≤ i < j ≤ N + 1) by

xi,j =

{
zi,j (1 ≤ i < j ≤ N),
θi,j (1 ≤ i ≤ N, j = N + 1).

(3..1)

Here zi,j are complex variables and θi,N+1 are the Grassmann odd variables
that satisfy θi,N+1θi,N+1 = 0 and θi,N+1θj,N+1 = −θj,N+1θi,N+1, (i 6= j).

We introduce the differential operators ϑi,j = xi,j
∂

∂xi,j
, (1 ≤ i < j ≤ N+1).

Theorem 3.5 [1] We fix parameters λi ∈ C (1 ≤ i ≤ N). The Heisenberg
realization of Uq(sl(N |1)) is given as follows.

hi =
i−1∑
j=1

(νiϑj,i − νi+1ϑj,i+1) + λi − (νi + νi+1)ϑi,i+1 +
N∑

j=i+1

(νi+1ϑi+1,j+1 − νiϑi,j+1),

ei =
i∑

j=1

xj,i
xj,i+1

[ϑj,i+1]q q
∑j−1

l=1
(νiϑl,i−νi+1ϑl,i+1),

fi =
i−1∑
j=1

νi
xj,i+1

xj,i
[ϑj,i]qq

∑i−1

l=j+1
(νi+1ϑl,i+1−νiϑl,i)−λi+(νi+νi+1)ϑi,i+1+

∑N+1

l=i+2
(νiϑi,l−νi+1ϑi+1,l)

+ xi,i+1

λi − νiϑi,i+1 −
N+1∑
l=i+2

(νiϑi,l − νi+1ϑi+1,l)


q

−
N∑

j=i+1

νi+1
xi,j+1

xi+1,j+1
[ϑi+1,j+1]qq

λi+
∑N+1

l=j+1
(νi+1ϑi+1,l−νiϑi,l).

Here we read xi,i = 1 and, for Grassmann odd variables xi,j, the expression
1
xi,j

stands for the derivative 1
xi,j

= ∂
∂xi,j

.
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We study how to recover the bosonization of the affine superalgebra
Uq(ŝl(N |1)) from the Heisenberg realization of Uq(sl(N |1)). We make the
following replacement with suitable argument.

ϑi,j → −bi,j± (z)/logq (1 ≤ i < j ≤ N + 1),

[ϑi,j ]q →

 e±b
i,j
+ (z) − e±b

i,j
− (z)

(q − q−1)z
(j 6= N + 1),

1 (j = N + 1).

xi,j →
{

: e(b+c)
i,j(z) : (j 6= N + 1),

: e−b
i,j(z) : or : e−b

i,j
± (q±1z)−bi,j(z) : (j = N + 1).

λi → ai±(z)/logq (1 ≤ i ≤ N),

[λi]q →
e±a

i
+(z) − e±ai−(z)

(q − q−1)z
(1 ≤ i ≤ N).

From the above replacement, the element hi of the Heisenberg realization
is replaced as following.

qhi →

 e
ai±(z)+

∑i

l=1
(bl,i+1
± (z)−bl,i± (z))+

∑N

l=i+1
(bi,l± (z)−bi+1,l

± (z))
(1 ≤ i ≤ N − 1),

ea
N
± (z)−

∑N−1

l=1
(bl,N± (z)+bl,N+1

± (z)) (i = N).

We impose q-shift to variable z of the operators ai±(z), bi,j± (z). For instance,

we have to replace ai±(z)→ ai±(q±
c+N−1

2 z). Bridging the gap by the q-shift,

we have the bosonizations ψ±i (q±
c
2 z) ∈ Uq(ŝl(N |1)) from qhi ∈ Uq(sl(N |1)).

ψ±i (q±
c
2 z) = ea

i
±(q
± c+N−1

2 z)+
∑i

l=1
(bl,i+1
± (q±(l+c−1)z)−bl,i± (q±(l+c)z))

× e
∑N

l=i+1
(bi,l± (q±(c+l)z)−bi−1,l

± (q±(c+l−1)z))+bi,N+1
± (q±(c+N)z)−bi+1,N+1

± (q±(c+N−1)z)
,

ψ±N (q±
c
2 z) = ea

N
± (q±

c+N−1
2 z)−

∑N−1

l=1
(bl,N± (q±(c+l)z)+bl,N+1

± (q±(c+l)z)).

In this replacement, one element qhi goes to two elements ψ±i (q±
c
2 z). Hence

this replacement is not a map. Replacements from ei, fi to x±i (z) are given
by similar way, however they are more complicated. See details in [2].

3.4. Wakimoto Realization

In this section we give the Wakimoto realization F(pa) whose character
coincides with those of the Verma module [14]. We introduce the operators
ξi,jm and ηi,jm (1 ≤ i < j ≤ N,m ∈ Z) by

ηi,j(z) =
∑
m∈Z

ηi,jm z
−m−1 =: ec

i,j(z) :, ξi,j(z) =
∑
m∈Z

ξi,jm z
−m =: e−c

i,j(z) : .
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The Fourier components ηi,jm =
∮ dz

2π
√
−1z

mηi,j(z), ξi,jm =
∮ dz

2π
√
−1z

m−1ξi,j(z)

(m ∈ Z) are well defined on the space F (pa). We focus our attention on

the operators ηi,j0 , ξi,j0 satisfying (ηi,j0 )2 = 0, (ξi,j0 )2 = 0. They satisfy

Im(ηi,j0 ) = Ker(ηi,j0 ), Im(ξi,j0 ) = Ker(ξi,j0 ), ηi,j0 ξi,j0 + ξi,j0 ηi,j0 = 1.

We have a direct sum decomposition.

F (pa) = ηi,j0 ξi,j0 F (pa)⊕ ξi,j0 ηi,j0 F (pa),

Ker(ηi,j0 ) = ηi,j0 ξi,j0 F (pa), Coker(ηi,j0 ) = ξi,j0 ηi,j0 F (pa) = F (pa)/(η
i,j
0 ξi,j0 )F (pa).

We set the operator η0, ξ0 by

η0 =
∏

1≤i<j≤N
ηi,j0 , ξ0 =

∏
1≤i<j≤N

ξi,j0 .

Definition 3.6 [14] We introduce the subspace F(pa) by

F(pa) = η0ξ0F (pa).

We call F(pa) the Wakimoto realization.

4. Screening and Vertex Operator

In this section we give the screening that commutes with the quantum
superalgebra Uq(ŝl(N |1)). We propose the vertex operators and the corre-
lation functions.

4.1. Screening

In this section we give the screening Qi (1 ≤ i ≤ N) that commutes with

the quantum superalgebra Uq(ŝl(N |1)) for an arbitrary level k 6= −N + 1
[15]. The Jackson integral with parameter p ∈ C (|p| < 1) and s ∈ C∗ is
defined by ∫ s∞

0
f(z)dpz = s(1− p)

∑
m∈Z

f(spm)pm.

In order to avoid divergence we work in the Fock space.

Theorem 4.1 [15] The screening Qi commutes with the quantum super-
algebra.

[Qi, Uq(ŝl(N |1))] = 0 (1 ≤ i ≤ N).
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We have introduced the screening operators Qi (1 ≤ i ≤ N) as follows.

Qi =

∫ s∞

0
: e−( 1

k+N−1
ai)(z| k+N−1

2 )S̃i(z) : dpz, (p = q2(k+N−1)).

Here we have set the bosonic operators S̃i(z) (1 ≤ i ≤ N) by

S̃i(z) =
1

(q − q−1)z

N∑
j=i+1

:
(
e−b

i,j
− (qN−1−jz)−(b+c)i,j(qN−jz) − e−b

i,j
+ (qN−1−jz)−(b+c)i,j(qN−j−2z)

)
× e

(b+c)i+1,j(qN−1−jz)+
∑N

l=j+1
(bi+1,l
− (qN−lz)−bi,l− (qN−l−1z))+bi+1,N+1

− (z)−bi,N+1
− (q−1z)

:

+ q : eb
i,N+1(z)+bi+1,N+1

+ (z)−bi+1,N+1(qz) : (1 ≤ i ≤ N − 1),

S̃N (z) = −q−1 : eb
N,N+1(z) : .

4.2. Vertex Operator

In this section we introduce the vertex operators Φ(z), Φ∗(z) [15]. Let F
and F ′ be Uq(ŝl(N |1)) representation for an arbitrary level k 6= −N+1. Let
Vα and V ∗Sα be 2N -dimensional typical representation with a parameters α

[21]. Let {vj}2
N

j=1 be the basis of Vα. Let {v∗j }2
N

j=1 be the dual basis of

V ∗Sα , satisfying (vi|v∗j ) = δi,j . Let Vα,z and V ∗Sα,z be the evaluation module
and its dual of the typical representation. For instance, the 8-dimensional
representation Vα,z of Uq(ŝl(3|1)) is given by

h1 = E3,3 − E4,4 + E5,5 − E6,6,

h2 = E2,2 − E3,3 + E6,6 − E7,7,

h3 = α(E1,1 + E2,2) + (α+ 1)(E3,3 + E4,4 + E5,5 + E6,6) + (α+ 2)(E7,7 + E8,8),

e1 = E3,4 + E5,6,

e2 = E2,3 + E6,7,

e3 =
√

[α]qE1,2 −
√

[α+ 1]q(E3,5 + E4,6) +
√

[α+ 2]qE7,8,

f1 = E4,3 + E6,5,

f2 = E3,2 + E7,6,

f3 =
√

[α]qE2,1 −
√

[α+ 1]q(E5,3 + E6,4) +
√

[α+ 2]qE8,7,

h0 = −α(E1,1 + E4,4)− (α+ 1)(E2,2 + E3,3 + E6,6 + E7,7)− (α+ 2)(E5,5 + E8,8),

e0 = −z(
√

[α]qE4,1 −
√

[α+ 1]q(E6,2 + E7,3) +
√

[α+ 2]qE8,5),

f0 = z−1(
√

[α]qE1,4 −
√

[α+ 1]q(E2,6 + E3,7) +
√

[α+ 2]qE5,8).
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Consider the following intertwiners of Uq(ŝl(N |1))-representation [20].

Φ(z) : F −→ F ′ ⊗ Vα,z, Φ∗(z) : F −→ F ′ ⊗ V ∗Sα,z .

They are intertwiners in the sense that for any x ∈ Uq(ŝl(N |1)),

Φ(z) · x = ∆(x) · Φ(z), Φ∗(z) · x = ∆(x) · Φ∗(z).

We expand the intertwining operators.

Φ(z) =
2N∑
j=1

Φj(z)⊗ vj , Φ∗(z) =
2N∑
j=1

Φ∗j (z)⊗ v∗j .

We set the Z2-grading of the intertwiner be |Φ(z)| = |Φ∗(z)| = 0. For
la = (l1a, l

2
a, · · · , lNa ) ∈ CN and β ∈ C, we set the bosonic operator φla(z|β)

by

φla(z|β) =: e

∑N

i,j=1

(
lia

k+N−1
Min(i,j)
N−1

N−1−Max(i,j)
1

aj
)
(z|β)

: .

In order to balance thegbackground chargeh of the vertex operators, we
introduce the product of the screenings Q(t) for t = (t1, t2, · · · , tN ) ∈ NN .

Q(t) = Qt11 Q
t2
2 · · · Q

tN
N .

The screening operator Q(t) give rise to the map,

Q(t) : F(pa)→ F(pa + t̂).

Here t̂ = (t̂1, t̂2, · · · , t̂N ) where t̂i =
∑N
j=1Ai,jtj .

Theorem 4.2 [15] For k = α 6= 0,−1,−2, · · · ,−N + 1, bosonizations of

the special components of the vertex operators Φ(t)(z) and Φ∗(t)(z) are given
by

Φ
(t)
2N

(z) = Q(t)φl̂
(
qk+N−1z

∣∣∣∣−k +N − 1

2

)
,

Φ
∗(t)
1 (z) = Q(t)φl̂

∗
(
qkz

∣∣∣∣−k +N − 1

2

)
,

where we have used l̂ = −(0, · · · , 0, α + N − 1), l̂∗ = (0, · · · , 0, α) and

t = (t1, t2, · · · , tN ) ∈ NN . The other components Φ
(t)
j (z) and Φ

∗(t)
j (z) (1 ≤

j ≤ 2N ) are determined by the intertwining property and are represented by
multiple contour integrals of Drinfeld currents and the special components

Φ
(t)
2N

(z) and Φ
∗(t)
1 (z). We have checked this theorem for N = 2, 3, 4.
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Here we give additional explanation on the above theorem. The explicit for-
mulae of the intertwining properties Φ(t)(z)·x = ∆(x)·Φ(t)(z) for Uq(ŝl(3|1))
are summarized as follows. We have set the Z2-grading of Vα as follows :
|v1| = |v5| = |v6| = |v7| = 0, and |v2| = |v3| = |v4| = |v8| = 1.

Φ
(t)
3 (z) = [Φ

(t)
4 (z), f1]q, Φ

(t)
5 (z) = [Φ

(t)
6 (z), f1]q,

Φ
(t)
2 (z) = [Φ

(t)
3 (z), f2]q, Φ

(t)
6 (z) = [Φ

(t)
7 (z), f2]q,

Φ
(t)
1 (z) =

1√
[α]q

[Φ
(t)
2 (z), f3]q−α , Φ

(t)
3 (z) =

−1√
[α+ 1]q

[Φ
(t)
5 (z), f3]q−α−1 ,

Φ
(t)
4 (z) =

−1√
[α+ 1]q

[Φ
(t)
6 (z), f3]q−α−1 , Φ

(t)
7 (z) =

1√
[α+ 2]q

[Φ
(t)
8 (z), f3]q−α−2 .

The elements fj are written by contour integral of the Drinfeld current fj =∮ dw
2π
√
−1x

−
j (w). Hence the components Φ

(t)
j (1 ≤ j ≤ 8) are represented by

multiple contour integrals of Drinfeld currents x−j (w) (1 ≤ j ≤ 3) and the

special component Φ
(t)
8 (z).

4.3. Correlation Function

In this section we study the correlation function as an application of the
vertex operators . We study non-vanishing property of the correlation
function which is defined to be the trace of the vertex operators over the
Wakimoto module of Uq(ŝl(N |1)). We propose the q-Virasoro operator L0
for k = α 6= −N + 1 as follows.

L0 =
1

2

N∑
i,j=1

∑
m∈Z

: ai−m
m2[Min(i, j)m]q[(N − 1−Max(i, j))m]q

[m]q[(k +N − 1)m]q[(N − 1)m]q[m]q
ajm :

+
N∑

i,j=1

Min(i, j)(N − 1−Max(i, j))

(k +N − 1)(N − 1)
aj0

−1

2

∑
1≤i<j≤N

∑
m∈Z

: bi,j−m
m2

[m]2q
bi,jm : +

1

2

∑
1≤i<j≤N

∑
m∈Z

: ci,j−m
m2

[m]2q
ci,jm :

+
1

2

∑
1≤i≤N

∑
m∈Z

: bi,N+1
−m

m2

[m]2q
bi,N+1
m : +

1

2

∑
1≤i≤N

bi,N+1
0 .

The L0 eigenvalue of |la, 0, 0〉 is 1
2(k+N−1)(λ̄|λ̄+2ρ̄), where ρ̄ =

∑N
i=1 Λ̄i and

λ̄ =
∑N
i=1 l

i
aΛ̄i.

Theorem 4.3 [15] For k = α 6= 0,−1,−2, · · · ,−N + 1, the correlation
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function of the vertex operators,

TrF(la)

(
qL0Φ

∗(y(1))
i1

(w1) · · ·Φ
∗(y(m))

im
(wm)Φ

(x(1))

j1
(z1) · · ·Φ

(x(n))

jn
(zn)

)
6= 0,

if and only if x(s) = (x(s),1, x(s),2, · · · , x(s),N ) ∈ NN (1 ≤ s ≤ n) and

y(s) = (y(s),1, y(s),2, · · · , y(s),N ) ∈ NN (1 ≤ s ≤ m) satisfy the following
condition.

n∑
s=1

x(s),i +
m∑
s=1

y(s),i =
(n−m)i

N − 1
α+ n · i (1 ≤ i ≤ N).
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