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Abstract. We diagonalize infinitely many commuting operators TB(z). We call these
operators TB(z) the boundary transfer matrix associated with the quantum group and the
elliptic quantum group. The boundary transfer matrix is related to the solvable model with a
boundary. When we diagonalize the boundary transfer matrix, we can calculate the correlation
functions for the solvable model with a boundary. We review the free field approach to

diagonalization of the boundary transfer matrix TB(z) associated with Uq(A
(2)
2 ) and Uq,p(ŝlN ).

We construct the free field realizations of the eigenvectors of the boundary transfer matrix TB(z).

This paper includes new unpublished formula of the eigenvector for Uq(A
(2)
2 ). It is thought that

this diagonalization method can be extended to more general quantum group Uq(g) and elliptic
quantum group Uq,p(g).

1. Introduction
We study infinitely many commuting operators TB(z) that we call the boundary transfer matrix.
The boundary transfer matrix is related to the solvable model with a boundary. There have
been many developments in solvable models in the last 30 years. Various models were found
to be exactly solvable and various methods were invented to solve these models. The Free field
approach is a powerful method to study exactly solvable models [1]. This paper is devoted to
the free field approach to diagonalization of the boundary transfer matrix TB(z). When we
diagonalize the boundary transfer matrix, we can calculate the correlation functions for the
solvable model with a boundary. The first paper on this subject was devoted to the XXZ
chain with a boundary [2], in which the boundary transfer matrix TB(z) acts on the highest
representation of the quantum group Uq(ŝl2). It is thought that this basic theory for the quantum
group Uq(ŝl2) can be extended to the quantum group Uq(g) for arbitrary affine Lie algebra g. It
is thought that the theory on the quantum group Uq(g) can be generalized to those on the elliptic
quantum group Uq,p(g). In this paper we summarize the generalization on this direction. This
paper includes a review on free field approach to the boundary transfer matrix [2, 3, 4, 5, 6, 7, 8]
and new unpublished formula of the boundary state for the quantum group Uq(A

(2)
2 ). The plan

of this paper is as follows. In section 2 we summarize the results for the quantum group Uq(A
(2)
2 )

[4] and give new unpublished formulae of the boundary state associated with nontrivial K-matrix
K±(z). In section 3 we review the results for the elliptic quantum group Uq,p(ŝlN ), which gives
a generalization of the papers [2, 3, 6, 7].



2. Quantum group Uq(A
(2)
2 )

In this section we diagonalize the boundary transfer matrix TB(z) for quantum group Uq(A
(2)
2 ).

2.1. Boundary transfer matrix TB(z)
We fix q and z such that 0 < |q| < 1 and |q2| < |z| < |q−2|. Let us set the q-integers

[a]q =
qa − q−a

q − q−1
.

We use the abbreviation.

(z; p1, p2, · · · , pM )∞ =
∞∏

k1,k2,···,kM=0

(1 − pk1
1 pk2

2 · · · pkM
M z).

The R-matrix R(ζ) for the twisted quantum group Uq(A
(2)
2 ) is given by following [9].

R(z) =
1

κ(z)



1
b(z) c(z)

d(z) e(z) f(z)
zc(z) b(z)

−q2ze(z) j(z) e(z)
b(z) c(z)

n(z) −q2ze(z) d(z)
zc(z) b(z)

1


. (1)

Here we have set

b(z) =
q(z − 1)
q2z − 1

, c(z) =
q2 − 1
q2z − 1

, d(z) =
q2(z − 1)(qz + 1)
(q2z − 1)(q3z + 1)

, e(z) =
q

1
2 (z − 1)(q2 − 1)

(q2z − 1)(q3z + 1)
,

f(z) =
(q2 − 1)((q3 + q)z − (q − 1))

(q2z − 1)(q3z + 1)
, n(z) =

(q2 − 1)((q3 − q)z + (q2 + 1))
(q2z − 1)(q3z + 1)

,

j(z) =
q4z2 + (q5 − q4 − q3 + q2 + q − 1)z − q

(q2z − 1)(q3z + 1)
,

κ(z) = z
(q6z; q6)∞(q2/z; q6)∞(−q5z; q6)∞(−q3/z; q6)∞
(q6/z; q6)∞(q2z; q6)∞(−q5/z; q6)∞(−q3z; q6)∞

.

Let {v+, v0, v−} denote the natural basis of V = C3. When viewed as an operator on V ⊗V , the
matrix element of R(z) are defined by R(z)vk1 ⊗ vk2 =

∑
j1,j2=±,0 vj1 ⊗ vj2R(z)k1,k2

j1,j2
, where the

ordering of the index is given by (+, +), (+, 0), (+,−), (0, +), (0, 0), (0,−), (−, +), (−, 0), (−,−).
The R-matrix R(z) satisfies the Yang-Baxter equation.

R1,2(z1/z2)R1,3(z1/z3)R2,3(z2/z3) = R2,3(z2/z3)R1,3(z1/z3)R1,2(z1/z2). (2)

The R-matrix R(z) is characterized by the intertwiner as the quantum group Uq(A
(2)
2 ). We set

the normalization function κ(z) such that the minimal eigenvalue of the corner transfer matrix
becomes 1 [20]. There exist three diagonal solutions of the K-matrix for the quantum group
Uq(A

(2)
2 ). The K-matrix Kε(z), (ε = ±, 0) are given by following [12].

K0(z) =
ϕ0(z)

ϕ0(z−1)

 1
1

1

 , K±(z) =
ϕ±(z)

ϕ±(z−1)


z2

±
√
−1q

3
2 + z

±
√
−1q

3
2 + z−1

1

 . (3)



where

ϕ0(z) =
(q8z; q12)∞(−q9z2; q12)∞
(q12z; q12)∞(−q5z2; q12)∞

, ϕ±(z) =
(±

√
−1q

9
2 z; q6)∞(∓

√
−1q

7
2 z; q6)∞

(±
√
−1q

1
2 z; q6)∞(∓

√
−1q

3
2 z; q6)∞

ϕ0(z). (4)

The K-matrix K(z) = Kε(z) satisfies the boundary Yang-Baxter equation in End(V ⊗ V ) [10].

K2(z2)R2,1(z1z2)K1(z1)R1,2(z1/z2) = R2,1(z1/z2)K1(z1)R1,2(z1z2)K2(z2). (5)

We set the normalization function ϕε(z), (ε = ±, 0) such that the minimal eigenvalue of the
boundary transfer matrix TB(z) becomes 1. The Izergin-Korepin model associated with the
identity solution K̄0(z) = id was studied in [4]. In this paper we give the free field realization
of the boundary state for nontrivial solutions K±(z). The Izergin-Korepin model with the
nontrivial solutions Kε(z), (ε = ±, 0) was studied in [5].

Let us introduce the vertex operators Φε(z), (ε = ±, 0) [13, 15, 16] that satisfy the following
commutation relation

Φε2(z2)Φε1(z1) =
∑

ε′1,ε′2=±,0

R
ε′1ε′2
ε1ε2(z1/z2)Φε′1

(z1)Φε′2
(z2). (6)

The vertex operator Φε(z) and its dual Φ∗
ε (z) = q−

ε
2 Φ−ε(−q−3z), (ε = ±, 0) satisfy the inversion

relation

gΦε1(z)Φ∗
ε2(z) = δε1,ε2id, (7)

where g = 1
1+q

(q2;q6)∞(−q3;q6)∞
(q6;q6)∞(−q5;q6)∞

. Let us introduce the boundary transfer matrix TB(z) for

Uq(A
(2)
2 ). The boundary transfer matrix TB(z) is given by

TB(z) = g
∑

ε,ε′=±,0

Φ∗
ε (z

−1)Kε′
ε (z)Φε′(z). (8)

The boundary transfer matrix TB(z) is related to the boundary Izergin-Korepin model [4, 5].
From the commutation relations of the vertex operators (6) and the boundary Yang-Baxter
equation (5), the commutativity of the boundary transfer matrix TB(z) is ensured.

[TB(z1), TB(z2)] = 0, for any z1, z2. (9)

We call the eigenvector |B〉ε,(ε = ±, 0) with eigenvalue 1 the boundary state.

TB(z)|B〉ε = |B〉ε. (10)

From the definition of ϕε(z), the boundary state |B〉 is the eigenvector with the minimal
eigenvalue. In the following section we give the free field realization of the boundary state
|B〉ε for the diagonal boundary K-matrix Kε(z), (ε = ±, 0). The boundary state |B〉ε for the
identity K-matrix K0(z) was constructed in [4]. Let us introduce the type-II vertex operators
Ψ∗

µ(ξ), (µ = ±, 0) that satisfy the following commutation relation.

Φε(z)Ψ∗
µ(ξ) = τ(z/ξ)Ψ∗

µ(ξ)Φε(z), (ε, µ = ±, 0), (11)

where

τ(z) = z−1 Θq6(q5z)Θq6(−q4z)
Θq6(q5z−1)Θq6(−q4z−1)

, Θp(z) = (p; p)∞(z; p)∞(pz−1; p)∞.



Multiplying the type-II vertex operators Ψ∗
µ(ξ) to the boundary state |B〉ε,

|ξ1, ξ2, · · · , ξN 〉µ1,µ2,···,µN = Ψ∗
µ1

(ξ1)Ψ∗
µ2

(ξ2) · · ·Ψ∗
µN

(ξN )|B〉ε, (12)

we have many eigenvectors.

TB(z)|ξ1, ξ2, · · · , ξN 〉µ1,µ2,···,µN =
N∏

s=1

τ(z/ξs)τ(−1/q3zξs)|ξ1, ξ2, · · · , ξN 〉µ1,µ2,···,µN .

The vectors {|ξ1, · · · , ξN 〉µ1,···,µN } are the basis of the space of the state of the boundary Izergin-
Korepin model.

2.2. Free field realization
In this section we give the free field realization of the boundary state |B〉ε. Let us introduce
bosons am,(m ∈ Z 6=0) as following [13, 14, 15, 16].

[am, an] = δm+n
[m]q
m

([2m]q − (−1)m[m]q). (13)

Let us set the zero-mode operators P,Q by

[am, P ] = [am, Q] = 0, [P,Q] = 1. (14)

Level-1 irreducible highest representation V (Λ1) of Uq(A
(2)
2 ) is realized by

V (Λ1) = C[a−1, a−2, · · ·] ⊕n∈Z enQ|Λ1〉, |Λ1〉 = e
Q
2 |0〉.

The vacuum vector |0〉 is characterized by

am|0〉 = 0, (m > 0), P |0〉 = 0.

Let us set the auxiliary operators P (z), Q(z), R−(w), S−(w) by

P (z) =
∑
m>0

a−mq
9m
2 zm

[2m]q − (−1)m[m]q
, Q(z) = −

∑
m>0

amq−
7m
2 z−m

[2m]q − (−1)m[m]q
,

R−(w) = −
∑
m>0

a−m

[m]q
q

m
2 wm, S−(w) =

∑
m>0

am

[m]q
q

m
2 w−m.

Let us set ε(q) = ([2]
q

1
2
)

1
2 . Let us set the current,

X−(w) = ε(q)eR−(w)eS−(w)e−Qw−P+ 1
2 .

The free field realizations of the vertex operators Φε(z) [13, 15, 16] are given by

Φ−(z) =
1

ε(q)
eP (z)eQ(z)eQ(−zq4)P+ 1

2 ,

Φ0(z) =
∮

C1

dw

2π
√
−1w

(q2 − 1)
q4z(1 − qw/z)(1 − qz/w)

: Φ−(z)X−(q4w) :,

Φ+(z) =
∮ ∮

C2

dw1

2π
√
−1w1

dw2

2π
√
−1w2

q1/2(1 − q2)2

q4z2w1w2

× (w1 − w2)2(q(w1 + w2) − (1 + q2)z)
(1 + qw1/w2)(1 + qw2/w1)(1 − qw1/z)(1 − qz/w1)(1 − qw2/z)(1 − qz/w2)

× : Φ−(z)X−(q4w1)X−(q4w2) : .



The integrand contour C1 encircles w = 0, qz but not w = q−1z. The integrand contour C2

encircles w1 = 0, qz, qw2 and w2 = 0, qz, qw1 but not w1 = q−1z, q−1w2 and w2 = q−1z, q−1w1.
The free field realization of type-II vertex operators Ψ∗

µ(ξ) are given as similar way [13]. Now we
have the free field realization of the boundary transfer matrix TB(z), using those of the vertex
operators. We construct the free field realization of the boundary state |B〉ε, analyzing those
of the boundary transfer matrix TB(z). The following is main result of this section. The free
field realization of the boundary states |B〉ε, (ε = ±, 0) are given by

|B〉ε = eFεe−
Q
2 |0〉, (ε = ±, 0). (15)

Here we have set

Fε = −1
2

∑
m>0

mq8m

[2m]q − (−1)m[m]q
a2
−m

+
∑
m>0

{
θm

(
(q

m
2 − q−

m
2 −

√
−1m)q4m

[2m]q − (−1)m[m]q

)
− (ε

√
−1)mq3m

[2m]q − (−1)m[m]q

}
a−m. (16)

Here we have used θm(x) =
{

x, m : even
0, m : odd . The boundary state |B〉0 for the identity K-matrix

K̄0(z) = id was constructed in [4]. The realizations of |B〉ε for the nontrivial K-matrix Kε(z)
are new. Multiplying the type-II vertex operators Ψ∗

µ(ξ) to the boundary state |B〉ε, we get the
diagonalization of the boundary transfer matrix TB(z). It is thought that this method can be
extended to the case of the affine quantum group Uq(g).

3. Elliptic quantum group Uq,p(ŝlN )
In this section we diagonalize the boundary transfer matrix TB(z) associated with the elliptic
quantum group Uq,p(ŝlN ) [8]. It gives a generalization of the papers [2, 3, 6, 7].

3.1. Boundary transfer matrix
Let us set the integer N = 2, 3, · · ·. We assume that 0 < x < 1 and r ≥ N + 2 (r ∈ Z). We set
z = x2u, x = e−πi/rτ . We set the elliptic theta function [u] by

[u] = x
u2

r
−uΘx2r(x2u), Θq(z) = (q; q)∞(z; q)∞(q/z; q)∞.

Let εµ(1 ≤ µ ≤ N) be the orthonormal basis of RN with the inner product (εµ|εν) = δµ,ν . Let
us set ε̄µ = εµ − ε where ε = 1

N

∑N
ν=1 εν . Note that

∑N
µ=1 ε̄µ = 0. Let αµ (1 ≤ µ ≤ N − 1) the

simple root : αµ = ε̄µ− ε̄µ+1. Let ωµ (1 ≤ µ ≤ N −1) be the fundamental weights, which satisfy

(αµ|ων) = δµ,ν , (1 ≤ µ, ν ≤ N − 1).

Explicitly we set ωµ =
∑µ

ν=1 ε̄ν . The type AN−1 weight lattice is the linear span of ε̄µ or ωµ.

P =
N−1∑
µ=1

Zε̄µ =
N−1∑
µ=1

Zωµ.

For a ∈ P we set aµ and aµ,ν by

aµ,ν = aµ − aν , aµ = (a + ρ|ε̄µ), (µ, ν ∈ P ).



Here we set ρ =
∑N−1

µ=1 ωµ. Let us set the restricted path P+
r−N by

P+
r−N = {a =

N−1∑
µ=1

cµωµ ∈ P |cµ ∈ Z, cµ ≥ 0,
N−1∑
µ=1

cµ ≤ r − N}.

For a ∈ P+
r−N , condition 0 < aµ,ν < r, (1 ≤ µ < ν ≤ N − 1) holds.

We recall elliptic solutions of the Yang-Baxter equation of face type. An ordered pair
(b, a) ∈ P 2 is called admissible if and only if there exists µ (1 ≤ µ ≤ N) such that b − a = ε̄µ.
An ordered set of four weights (a, b, c, d) ∈ P 4 is called an admissible configuration around
a face if and only if the ordered pairs (b, a), (c, b), (d, a) and (c, d) are admissible. Let us

set the Boltzmann weight functions W

(
c d
b a

∣∣∣∣ u)
associated with admissible configuration

(a, b, c, d) ∈ P 4 [11]. For a ∈ P+
r−N , we set

W

(
a + 2ε̄µ a + ε̄µ

a + ε̄µ a

∣∣∣∣ u)
= R(u), (17)

W

(
a + ε̄µ + ε̄ν a + ε̄µ

a + ε̄ν a

∣∣∣∣ u)
= R(u)

[u][aµ,ν − 1]
[u − 1][aµ,ν ]

, (18)

W

(
a + ε̄µ + ε̄ν a + ε̄ν

a + ε̄ν a

∣∣∣∣ u)
= R(u)

[u − aµ,ν ][1]
[u − 1][aµ,ν ]

. (19)

The normalizing function R(u) is given by

R(u) = z
r−1

r
N−1

N
ϕ(z−1)
ϕ(z)

, ϕ(z) =
(x2z; x2r, x2N )∞(x2r+2N−2z; x2r, x2N )∞

(x2rz; x2r, x2N )∞(x2Nz; x2r, x2N )∞
.

Because 0 < aµ,ν < r (1 ≤ µ < ν ≤ N − 1) holds for a ∈ P+
r−N , the Boltzmann weight functions

are well defined. The Boltzmann weight functions satisfy the Yang-Baxter equation of the face
type. ∑

g

W

(
d e
c g

∣∣∣∣ u1

)
W

(
c g
b a

∣∣∣∣ u2

)
W

(
e f
g a

∣∣∣∣ u1 − u2

)

=
∑
g

W

(
g f
b a

∣∣∣∣ u1

)
W

(
d e
g f

∣∣∣∣ u2

)
W

(
d g
c b

∣∣∣∣ u1 − u2

)
. (20)

We set the normalization function ϕ(z) such that the minimal eigenvalue of the corner transfer
matrix becomes 1 [20]. An order set of three weights (a, b, g) ∈ P 3 is called an admissible
configuration at a boundary if and only if the ordered pairs (g, a) and (g, b) are admissible. Let

us set the boundary Boltzmann weight functions K

 a
g

b

∣∣∣∣∣∣ u
 for admissible weights (a, b, g)

as following [12].

K

 a
a + ε̄µ

b

∣∣∣∣∣∣ u
 = z

r−1
r

N−1
N

− 2
r
a1

h(z)
h(z−1)

[c − u][a1,µ + c + u]
[c + u][a1,µ + c − u]

δa,b. (21)

In this paper, we consider the case of continuous parameter 0 < c < 1. The normalization
function h(z) is given by following [8].

h(z) =
(x2r+2N−2/z2;x2r, x4N )∞(x2N+2/z2; x2r, x4N )∞

(x2r/z2; x2r, x4N )∞(x4N/z2; x2r, x4N )∞



× (x2N+2c/z; x2r, x2N )∞(x2r−2c/z; x2r, x2N )∞
(x2N+2r−2c−2/z; x2r, x2N )∞(x2c+2/z; x2r, x2N )∞

×
N∏

j=2

(x2r+2N−2c−2a1,j/z; x2r, x2N )∞(x2c+2a1,j/z; x2r, x2N )∞
(x2r+2N−2c−2a1,j−2/z; x2r, x2N )∞(x2c+2+2a1,j/z; x2r, x2N )∞

. (22)

The boundary Boltzmann weight functions and the Boltzmann weight functions satisfy the
Boundary Yang-Baxter equation.

∑
f,g

W

(
c f
b a

∣∣∣∣ u1 − u2

)
W

(
c d
f g

∣∣∣∣ u1 + u2

)
K

 g
f

a

∣∣∣∣∣∣ u1

 K

 e
d

g

∣∣∣∣∣∣ u2


=

∑
f,g

W

(
c d
f e

∣∣∣∣ u1 − u2

)
W

(
c f
b g

∣∣∣∣ u1 + u2

)
K

 e
f

g

∣∣∣∣∣∣ u1

 K

 g
b

a

∣∣∣∣∣∣ u2

 .(23)

We set the normalization function h(z) such that the minimal eigenvalue of the boundary transfer
matrix TB(z) becomes 1.

The vertex operator Φ(b,a)(z) and the dual vertex operator Φ∗(a,b)(z) associated with the
elliptic quantum group Uq,p(ŝlN ), are the operators which satisfy the following commutation
relations

Φ(a,b)(z1)Φ(b,c)(z2) =
∑
g

W

(
a g
b c

∣∣∣∣ u2 − u1

)
Φ(a,g)(z2)Φ(g,c)(z1), (24)

Φ∗(a,b)(z1)Φ∗(b,c)(z2) =
∑
g

W

(
c b
g a

∣∣∣∣ u2 − u1

)
Φ∗(a,g)(z2)Φ∗(g,c)(z1), (25)

Φ(a,b)(z1)Φ∗(b,c)(z2) =
∑
g

W

(
g c
a b

∣∣∣∣ u1 − u2

)
Φ∗(a,g)(z2)Φ(g,c)(z1), (26)

and the inversion relation

Φ(a,g)(z)Φ∗(g,b)(z) = δa,b. (27)

We define the boundary transfer matrix TB(z) for the elliptic quantum group Uq,p(ŝlN ).

TB(z) =
N∑

µ=1

Φ∗(a,a+ε̄µ)(z−1)K

 a
a + ε̄µ

a

∣∣∣∣∣∣ u
 Φ(a+ε̄µ,a)(z). (28)

From the commutation relations of the vertex operators (24), (25), (26), and the boundary
Yang-Baxter equation (23), the boundary TB(z) commute with each other.

[TB(z1), TB(z2)] = 0, for any z1, z2. (29)

We call the eigenvector |B〉 with the eigenvalue 1 the boundary state.

TB(z)|B〉 = |B〉. (30)

Let us introduce the type-II vertex operators Ψ∗(b,a)(z) by

Φ(d,c)(z1)Ψ∗(b,a)(z2) = χ(z2/z1)Ψ∗(b,a)(z2)Φ(d,c)(z1), (31)

Φ∗(c,d)(z1)Ψ∗(b,a)(z2) = χ(z1/z2)Ψ∗(b,a)(z2)Φ∗(c,d)(z1). (32)



where we have set

χ(z) = z−
N−1

N
Θx2N (−xz)

Θx2N (−xz−1)
.

We set the vectors |ξ1, ξ2, · · · , ξM 〉µ1,µ2,···,µM (1 ≤ µ1, µ2, · · · , µM ≤ N).

|ξ1, ξ2, · · · , ξM 〉µ1,µ2,···,µM (33)

= Ψ∗(b+ε̄µ1+ε̄µ2+···+ε̄µM
,b+ε̄µ2+···+ε̄µM

)(ξ1) · · ·Ψ∗(b+ε̄µM−1
+ε̄µM

,b+ε̄µM
)(ξM−1)Ψ∗(b+ε̄µM

,b)(ξM )|B〉.

Now we have many eigenvectors of TB(z).

TB(z)|ξ1, ξ2, · · · , ξM 〉µ1,µ2,···,µM =
M∏

j=1

χ(ξj/z)χ(1/ξjz) |ξ1, ξ2, · · · , ξM 〉µ1,µ2,···,µM .

The vectors |ξ1, ξ2, · · · , ξM 〉µ1,µ2,···,µM are the basis of the space of the state of the boundary
Uq,p(ŝlN ) face model.

3.2. Free field realization
In this section we give the free field realizations of the boundary state |B〉. Let us introduce the
bosons βi

m, (i = 1, 2, · · · , N − 1; m ∈ Z) as following [17].

[βj
m, βk

n] =


m

[(r − 1)m]x
[rm]x

[(N − 1)m]x
[Nm]x

δm+n,0 (j = k)

−mxNm sgn(j−k) [(r − 1)m]x
[rm]x

[m]x
[Nm]x

δm+n,0 (j 6= k).
(34)

Let us set βN
m by

∑N
j=1 x−2jmβj

m = 0. The above commutation relations are valid for all
1 ≤ j, k ≤ N . We also introduce the zero-mode operators Pα, Qα, (α ∈ P ) by

[
√
−1Pα, Qβ ] = (α|β), (α, β ∈ P ). (35)

In what follows we deal with the bosonic Fock space Fl,k, generated by βj
−m(m > 0) over the

vacuum vector |l, k〉, where l = b + ρ, k = a + ρ for a ∈ P+
r−N , b ∈ P+

r−1−N .

Fl,k = C[{βj
−1, β

j
−2, · · ·}j=1,···,N−1]|l, k〉, |l, k〉 = e

√
−1
√

r
r−1

Ql−
√
−1

√
r−1

r
Qk |0, 0〉.

where

βj
m|l, k〉 = 0, (m > 0), Pα|l, k〉 =

(
α

∣∣∣∣∣
√

r

r − 1
l −

√
r − 1

r
k

)
|l, k〉.

The commutation relation of bosons βj
m is not symmetric. It is convenient to introduce new

generators of bosons αj
m (m ∈ Z 6=0; 1 ≤ j ≤ N − 1) by

αj
m = x−jm(βj

m − βj+1
m ). (36)

They satisfy the following commutation relations.

[αj
m, αk

n] = m
[(r − 1)m]x

[rm]x
[Aj,km]x

[m]x
δm+n,0,



where Aj,k is a matrix element of the Cartan matrix of slN type. We give a free field
realization of the vertex operators Φ(b,a)(z). Let us set the operators P−(z), Q−(z), Rj

−(z), Sj
−(z),

(1 ≤ j ≤ N − 1) by

P−(z) =
∑
m>0

1
m

β1
−mzm, Q−(z) = −

∑
m>0

1
m

β1
mz−m,

Rj
−(z) = −

∑
m>0

1
m

αj
−mzm, Sj

−(z) =
∑
m>0

1
m

αmz−m.

Let us set the basic operators U(z),Fαj (z), (1 ≤ j ≤ N − 1) on the Fock space Fl,k.

U(z) = z
r−1
2r

N−1
N e−

√
−1

√
r−1

r
Qε̄1z−

√
r−1

r
Pε̄1eP−(z)eQ−(z),

Fαj (z) = z
r−1

r e
√
−1

√
r−1

r
Qαj z

√
r−1

r
Pαj eRj

−(z)eSj
−(z).

In what follows we set l = b + ρ, k = a + ρ, (a ∈ P+
r−N , b ∈ P+

r−N−1) and πµ =√
r(r − 1)Pε̄µ , πµ,ν = πµ − πν . Then πµν acts on Fl,k as an integer (εµ − εν |rl − (r − 1)k).

We give the free field realization of the vertex operators Φ(a+ε̄µ,a)(z), (1 ≤ µ ≤ N − 1) [17] by

Φ(a+ε̄1,a)(z−1
0 ) = U(z0),

Φ(a+ε̄µ,a)(z−1
0 ) =

∮
· · ·

∮ µ−1∏
j=1

dzj

2πizj
U(z0)Fα1(z1)Fα2(z2) · · ·Fαµ−1(zµ−1)

×
µ−1∏
j=1

[uj − uj−1 + 1
2 − πj,µ]

[uj − uj−1 − 1
2 ]

.

Here we set zj = x2uj . We take the integration contour to be simple closed curve that encircles
zj = 0, x1+2rszj−1, (s ∈ N) but not zj = x−1−2rszj−1, (s ∈ N) for 1 ≤ j ≤ µ−1. The Φ(a+ε̄µ,a)(z)
is an operator such that Φ(a+ε̄µ,a)(z) : Fl,k → Fl,k+ε̄µ . The free field realization of the dual vertex
operator Φ∗(a,b)(z) and the type-II vertex operator Ψ∗(a,b)(z) are given by similar way [17, 18].
Now we have the free field realization of the boundary transfer matrix TB(z), using those of the
vertex operators. We construct the free field realization of the boundary state |B〉, analyzing
those of the transfer matrix TB(z). The following is main result of this section. The free field
realization of the boundary state |B〉 is given as following [8].

|B〉 = eF |k, k〉. (37)

Here we have set

F = −1
2

∑
m>0

N−1∑
j=1

N−1∑
k=1

1
m

[rm]x
[(r − 1)m]x

Ij,k(m)αj
−mαk

−m +
∑
m>0

N−1∑
j=1

1
m

Dj(m)βj
−m, (38)

where

Dj(m) = −θm

 [(N − j)m/2]x[rm/2]+x x
(3j−N−1)m

2

[(r − 1)m/2]x


+

x(j−1)m[(−r + 2π1,j + 2c − j + 2)m]x
[(r − 1)m]x

+
[m]xx(r−2c+2j−2)m

[(r − 1)m]x

 N−1∑
k=j+1

x−2mπ1,k


+

x(2j−N)m[(r − 2π1,N − 2c + N − 1)m]x
[(r − 1)m]x

, (39)



and

Ij,k(m) =
[jm]x[(N − k)m]x

[m]x[Nm]x
= Ik,j(m) (1 ≤ j ≤ k ≤ N − 1). (40)

Here we have used

[a]+x = xa + x−a, θm(x) =
{

x, m : even,
0, m : odd.

Multiplying the type-II vertex operators Ψ∗(a,b)
µ (ξ) to the boundary state |B〉, we get the

diagonalization of the boundary transfer matrix TB(z) on the space of state of the boundary
Uq,p(ŝlN ) face model. It is thought that this method can be extended to the case of the elliptic
quantum group Uq,p(g) for affine Lie algebra g [19].
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1243 241

[8] Kojima T 2011 Diagonalization of infinite transfer matrix of boundary Uq,p(A
(1)
N−1) face model, J.Math.Phys.52

013501
[9] Izergin A and Korepin V 1981 The inverse scattering method approach to the quantum Shabat-Mikhailov

model Commun.Math.Phys. 79 303
[10] Sklyanin E 1988 Boundary condition for integrable quantum system J.Phys.A21 2375

[11] Jimbo M, Miwa T and Okado M 1988 Local State Probabilities of Solvable Lattice Models : An A
(1)
n−1 family

Nucl.Phys.B300 74
[12] Batchelor M, Fridkin V, Kuniba A and Zhou Y 1996 Solutions of the reflection for face and vertex models

associated with A
(1)
n , B

(1)
n , C

(1)
n and A

(2)
n Phys.Lett.B376 266

[13] Matsuno Y 1997 Thesis (Kyoto University)
[14] Jing N 1990 Twisted vertex representation of quantum affine algebras Invent.Math.102 663
[15] Jing N and Misra K 1999 Vertex operators for twisted quantum affine algebras Trans.Amer.Math.Soc.351

1663
[16] Hou B, Yang W.-L. and Zhang Y.-Z. 1999 The twisted quantum affine algebra Uq(A

(2)
2 ) and correlation

functions for the Izergin-Korepin model, Nucl.Phys.B556 485
[17] Asai Y, Jimbo M, Miwa T and Pugai Ya 1996 Bosonization of vertex operators for the A

(1)
n−1 face model

J.Phys.A29 501
[18] Furutsu H, Kojima T and Quano Y 2000 Type-II vertex operators for the A

(1)
n−1 face model

Int.J.Mod.Phys.A15 1533

[19] Jimbo M, Konno H, Odake S and Shiraishi J 1999 The elliptic algebra Uq,p(ŝl2) : Drinfeld currents and
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