1st Reading
September 14, 2009 17:3 WSPC/139-IJMPA 04630

1 International Journal of Modern Physics A [
World Scientific
Vol. 24, No. ,00 (2009) 17,18_ \\ www.worldscientific.com
3 © World Scientific Publishing Company

WAKIMOTO REALIZATION OF THE
5 ELLIPTIC QUANTUM GROUP U, ,(sln)*

TAKEO KOJIMA

7 Department of Mathematics, College of Science and Technology,
Nihon University, Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

9 Received 10 July 2009

We construct a free field realization of the elliptic quantum algebra Ug,p (5;) for arbi-
11 trary level E\;ﬁ 0, —N. We study Drinfeld current and the screening current associated
with Ug,p(sly) for arbitrary level k. In the limit p — 0 this realization becomes g-

13 Wakimoto realization for Uy (ﬁ ).
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15 1. Introduction
The elliptic quantum group has been proposed in papers.!® There are two types of
17 elliptic quantum groups, the vertex type Aq,p(s/IE) and the face type Bg 1 (g), where
g is a Kac—Moody algebra associated with a symmetrizable Cartan matrix. Not
19 only the quantum group but also the elliptic quantum groups have the structure of
quasitriangular quasi-Hopf algebras introduced by V. Drinfeld.® H. Konno™® intro-
21 duced the elliptic quantum algebra Uq7p(s/1;) as an algebra of the elliptic analogue
of Drinfeld current in the context of the fusion SOS model.'' M. Jimbo et al.,'?
23 continued to study the elliptic quantum algebra Uq,p(s/lg). They identified Uy, (51;)
with the tensor product of By, ,\(s/lg) and a Heisenberg algebra H. The elliptic quan-
25 tum group By, x (Slg) is a quasi-Hopf algebra. The intertwining relatlon of the vertex
operator of By \ (Slg) is based on the quasi-Hopf structure of Bg x (Slg) By the above
27 isomorphism Uq’p(Slg) By, )\(512) ® 'H, we can understand “intertwining relation”
of the vertex operator for the elliptic algebra Uq7p(512). Going along the isomor-
29 phism Uy ,(g) ~ By x(g) ® H, the elliptic analogue of Drinfeld current of Uq7p(s/1;)
is extended to those of U, ,(g) for nontwisted affine Lie algebra g.'*!'3 We give a
31 comment on Hopf-algebroid structure!® of the elliptic algebra Uy, p(le) Recently
the elliptic algebra Uy, p(le) has been understood as an Hopf algebroid by K Konno.?
33 The vertex operator derived as the Hopf algebroid intertwiner of Uy, p(slg) coin-

cides with those derived as the “intertwiner” of By, ,\(512) ® H. In this paper, we are
*Dedicated to Professor Michio Jimbo on the occasion on the 60th birthday.
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1 interested in higher-rank generalization of level k free field realization of the elliptic
quantum algebra. For the elliptic algebra U, ,(sly), there exists free field realiza-
3 tion for arbitrary level k£.712:20 In this paper we are interested in the higher-rank
generalization of Wakimoto realization of the elliptic algebra Uq,p(sflg). We con-
5 struct level k free field realization of Drinfeld current associated with the elliptic
algebra Uq,p(si\v). This gives the higher-rank generalization of the author’s previous
7 work on U, ,(sl3).2! It is supposed that this free field realization can be applied for

construction of the level k integrals of motion for the elliptic algebra Uq,p(si\v). For
9 this purpose, see Refs. 23-25.
The organization of this paper is as follows. In Sec. 2, we set the notation and

11 introduce bosons. In Sec. 3, we review the level k free field realization of the quan-
tum group Uq(sT]\V).ls’lg In Sec. 4, we give the free field realization of the dressing

13 operators U?(z) and U**(z), which cause the elliptic deformation of Drinfeld cur-
rent, and also study the screening current. In App. A, we explain a systematic way

15 of construction of a free field realization of the dressing operators U*(z) and U*?(z).
In App. B, we summarize the normal ordering of the basic operators.

17 After finishing this work, the author noticed a paper on Uy, (S/IE) by W. Chang
and X. Ding,2° which seemed to be submitted to arXiv. a day after the author

19 submitted his paper on Uq7p(s/1;).21

2. Bosons

The purpose of this section is to set up the basic notation and to introduce boson.
In this paper, we fix three parameters ¢, k, r € C. Let us set " = r — k. We assume
k # 0, —N and Re(r) > 0, Re(r*) > 0. We assume ¢ is generic with |¢| < 1,¢ # 0.
Let us set a pair of parameters p and p* by

We use the standard symbol of g-integer [n] by

n

[n] = qn_iqil .
q—q
Following Refs. 18 and 19, we introduce free bosons a?, (1 £i < N — 1;n € Z),
bl (1£i<j<SNyn€Zy)andchl (1<i<j< N;n€ Zy), and the zero-mode
operators a* (1<i< N —1),0% (1<i<j<N)andc (1<i<j<N).

[(k + N)n][A; n]

[afzv agn] = n 5n+m70 , [pfw qg] = (k + N)AiJ ) (2'1)
7 nk,0] _ _w . . .7 kil _ 5.
[bn 7bm ] - n 5z,k5],l5n+m,O I} [pb aQb ] - 5z,k5k,l B (22)

2
e eni'] = %5@,65]-716%%0, [PE7, 4] = Gixda (2.3)
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Here the matrix (A; ;);<; j<n—_1 represents the Cartan matrix of classical slx. For
parameters a; € R (1 £ ¢ = N—-1),b; e R(1=i<j<N)andeg,; € R
(1 £i<j £ N), weset the vacuum vector |a,b,c) of the Fock space Fop . as
follows:

alla,b,c) = bi¥|a,b,c) = chFla,b,c) =0 (n>0;1<i<N-1;1<Zj<k<N),
pila,b,c) = a;la,b,c), p{;’k|a,b, ¢) =bjrla,b,c),
piFla,b,e) =¢jgla,bc) (1SiSN-1;1<j<k<N).

The Fock space F, .. is generated by bosons a’ b{lfl and c{]ﬁb for n € Ng. The

dual Fock space F, . is defined in the same ma;ner. In this paper, we construct
the elliptic analogue of Drinfeld current for U, ,(sly) by these bosons a’,, b%¥ and
¢k acting on the Fock space.
Let us set the elliptic theta function ©,(z) by
oo
0p(2) = (:0)oc (/2 D)o (Pi D)o, (D)oo = [[(1 = 1"2).
n=0
It is convenient to work with the additive notation. We use the parametrization

q= e—ﬂw/j/rr

)

p= 6_27“/?1/7

p* _ 6_27“/?1/7* (T‘T _ T‘*T*),

z2=gq
Let us set Jacobi elliptic theta function [u], by
% —u @q27‘ (Z)
(q2r. q2r)3 '
’ o0
The function [u], has a zero at u = 0, enjoys the quasiperiodicity property

[ul, = q

_e_ﬂ_\/jlq__}rr\/—lu

[u+rle=~[uly, [utrr], =  [ulr

Let us set the g-difference (0, f)(z) by
flg®z) = fla~*2)
a0, 1) (2) = .
(w:1)(2) = FLEEE
Let us set the delta-function §(z) as formal power series:

0(z) = Zz"

nez

3. Free Field Realization of U, (S/lj\\[)

The purpose of this section is to give a review on the free field realization of the
quantum affine algebra U,(sly),'® which is a basis of the elliptic algebra Uy ,(sly ).
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1 3.1. Drinfeld current

Let us set the bosonic operators a’, (z), a’(z) (1 <i < N —1), b (2), b (2), ¢ (z)
(1£i<j<N)by

al,(z) = :t(q—q_l)ZaiinzI”:I:pz logq, (3.1)
n>0
b (z) = £(q—q ) Y b 2T" £y logg, (3.2)
n>0
iy = N On Ny L
. pisd i i
bI(z) ==Y L= "+ gy +py logz, (34)
=l
() = =) " gl 4l oz, (35)
=l
Let us set the auxiliary operators 47 (z), 877 (2), 637 (2), 85 (2), By (z) (1 < i <
J=N) by
Iy b+c)id i i i,j ij
9(:) = = 30 CTE e 4 )+ G ) os(—2) (36)
n#0
B17(2) = b (2) = (b + V) (g2), .
057(2) = () = (7 + ) (g '), |
G5 (2) = b (2) + (B + ) (g 12), (3.8)
B (2) = 0 (2) + (07 + ) g2) |
We give a free field realization of Drinfeld current for Uq(si\v).
Definition 3.1. Let us set the bosonic operators E¥(z) (1 <4< N —1) by
. 1 U ,
Etiz)= —— > EM'(z), 3.9
= s B (39)
-1 Nl )
E"(2) = E ' (2), 3.10
= = L 5 (3.10)

where we have set

Ebi(z) = @) (eff{‘i“(qi‘lﬂ _ eﬁg*'”l(qf—lz))

K SO W) (3.11)
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Ei(z) = @) (e—ﬁﬁ’i(q“k“)ﬂ _ e—ﬁﬁ’i(q_(’“'”Z))

Sy (L (D) bt (0 0) ot (4 )
K+ i (08 (a0 2) N (o )
for 1<j<i—1, (3.12)

B = s (D (0 ) )

o ) [ kN il s B
7,,1+1(qk+1z)+a»+(q £ Z) RN (B (gF ) b (1))
_ e 5 (3.13)

i idHL (ki LI+t i+ L0kt
E7'(2) =:eY (" z) (eﬁz (@2) _ B (g Z))

) k+N . . .
() DI 0 @ b )
e :,

for i+1<;<N-1. (3.14)

Let us set the bosonic operators X (z) (1 <7 < N —1) by

) ) ) ) E4+N
Ti_y (b TG =D 2 — bt (¢ (k) 2)) 4 ady <qi 3 z>

Ui (H12) = e T (g o) .. (3.15)
Let us set
i N
=3 (o0 = n) e+ Y (- m). (3.16)
j=1 j=i+1

Here the symbol : O: represents the normal ordering of O. For example, we have

. bilb? k<0,
b7y = iy
bbil k>0,

PR S % IR B BN % IR % X Y |
Py 4y =4y Py =y Py -

Theorem 3.2. The operators E¥(z), i (2), h; (1 <4< N —1) give a free field
realization of Uq(s/IR) for arbitrary level k # 0, —N. In other words, they satisfy
the following commutation relations:

[hi, EX9(2)] = £4; ;EF9(2), (3.17)
(21 — qF403 20) EX (20 ) B9 (29) = (qF 499 21 — 20) EF I (2) B (z1),  (3.18)
[ (21), ¥ (22)] = 0, (3.19)

(21 — ¢ 2) (21 — ¢ A R 29)9ht (21)0 (22)

= (21 — ¢ z) (21 — g~ M F2)gl (20)0 (1), (3.20)
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(1 = D) Just (20) B (22)

= (=a = i) B )i ), 321)
(51— D) B2 (22)

= (in'i’jzl - q¥§22)¢{ (20) B (21), (3.22)
{E*(21) EF(22) B9 (23) — (q + ¢ 1) EH ¥ (21) EF (23) E* ¥ (22)

+ Ei’i(Zg)Ei’i(Zl)Ei’j(Zg)} + {21 — 22} = 07 for Ai)j = —]., (323)

; ; 05 4 Z1 i k
E+,1 E—J — ) ) —k =L i ( —= )
[ (), (=2) (¢ —gq")z122 ( (q 22 vilaia
- 5(61’“&)1#1' (q_gzz)). (3.24)
2o
1 When we take the limit ¢ — 1, we recover Wakimoto realization for sly.'3

3.2. Screening current
3 Following Ref. 19, we define the screening current S%(z), which commutes with
Uq(SlN).
Definition 3.3. Let us introduce the bosonic operator S(z) (1 <i < N —1) by
. —1 i ~.
Si(z) = ————— e ¥ (A Gi(2):, 3.25
() = = (=) (3.25)
where we have set
Siz)= 3 @ (e— RICRREE _e—ﬁ;”(qN-Jz))
Jj=it+1

X eZ {V=j+1(bi_H’L(qN7l+1Z)—biLl(qN7lz)) ..

Proposition 3.4. The bosonic operators S*(z), E¥*(z) (1 £ j £ N — 1) satisfy
the following commutation relations:

A o
|:U1 — U — TJ:| Sl(zl)SJ (22)
k+N
= [M —ug + %} S (29)S%(21) ~ reg., (3.26)
k+ N

E4(21)87(22) = S9(22) ET¥(21) ~ reg., (3.27)
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E_’i(Z1)Sj(ZQ) = Sj(ZQ)E_’i(Zl) ~ reg. + 51'7j X k+N822

i KN |

x < 1 :ezn;ﬂ) —[(ki%)n]q 2" Z;n_ kiN (qi—"_pfl log z2) :) . (328)

Z1—Z2
1 The symbol ~ reg. means equality modulo regular function.

The equalities (3.17)—(3.27) hold in :~ reg.” sense. The exceptional cases are
3 (3.24) and (3.28), which do not exist inside regular function. Note that the elliptic
theta function [u]x4n has already appeared in trigonometric symmetry Uy (sly).

5 4. Free Field Realization of Uq,p(s/l-z\v)

The purpose of this section is to give a free field realization for the elliptic algebra
7 Uqp(sly) for arbitrary level k # 0, —N

4.1. Drinfeld current
Following Ref. 20, let us introduce the auxiliary operators B3 (z), B2/ (z) (1 < i <

j = N) by
B (z) = exp < b ( 1z)"> , (4.1)
n>0
By (2) = exp (ﬂ: Z mb” g " e ) (4.2)
n>0
Let us introduce the auxiliary operators A*(z), A% (2) (1<i < N —1) by
A (z) = exp <Z = (g z)") : (4.3)
n>0
i 1 i (. —1T" _\—n
Ai(z) = exp (— 5 () ) | (14)
n>0

Definition 4.1. We define the dressing operators U*(z), Ui(z) (1 <i < N — 1),

U*z < H B*] 1+1 2 J )B*J Z(q1j2)> Bii,i—&-l(qz—iz)Bf,Hl(q,iz)

N
% ( H Bii7j(qj+12)8ii+17j(qj+22)>A*i(qk_2NZ), (45)

j=it2
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i—1
Ui(z) - (H Béi+1(q2+jz)81i(ql+jz)> Bi_,i+1(q—2+iz)8i_7i+1(qiz)

j=1
N .. . . . . . —k+N
X ( H B (¢ 2) B (q]_22)> A (q 2 z) : (4.6)
J=i+2
1 Formulae (4.5) and (4.6) are the main result of this paper. In App. A, we explain

a systematic construction of the dressing operators U*(z), U'(z2).

Definition 4.2. We define the elliptic deformation of Drinfeld current e;(z), fi(2),
TE(z) (1SiSN—1), by

ei(z) = U (2)ET(2), (4.7)
fiz) = E7Y(2)U'(2) (4.8)
() = U (gF2)uf ()07 (a7%2)), (4.9)
U (2)=U* (q_%z)w;(z)Ui (qu) . (4.10)

Example 4.3. Upon specialization N = 3, we recover the dressing operator of
Ug,p(sl3):*!

U (=) = BY(02)B (a7 2B (0 2B g A (¢ ), (@)

U2(z) = B (q2) B2 (2) B2 (2) B (¢ 2 )A*2( z) , (4.12)
U'(z) = BY(q 7' 2)B 2 (q2)B2% (22) B () A (77 2) (4.13)
U2(z) = B (¢ 12)BY2(2) B> (2) B3 (¢22) A2 (q—+z) . (4.14)
3 The notation of this paper is slightly different from those of Ref. 21. For example,

BL2(2) = Billg” 12), BI(2) = B2 12) and BE(:) = B0 1),

Proposition 4.4. The bosonic operators e;(z), fi(2), UE(2) (1 £i < N—1) satisfy
the following commutation relations:

Op- (¢~ 21/ 2)ei(21)ej(22) = =490y (%7 21/ 20)ej(20)ei(21),  (4.15)
Op(q™M 21/ 22) fi(21) fi(22) = ¢M 9Oy (g M9 21/ 20) f(22) fi(z1), (4.16)
Op(q™ 9 21/22)Opr (g9 21/ 20) U (21) U7 (22)

= O,(q 721 /22)Op (477 21/ 20) U (20) U (21) (4.17)
Op(pq™9 7 21/ 22)Ope (p*q™ 449 21 [ 20) U (21) VT (22)

= Op(pq 7 21 /22) O (p7 g 21 ) 20)UT (22) U (21), (4.18)
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O (47425 21 /22 ) WE ()65 (22) = Op (4455521 /20 )5 () UE (1), (4.19)

O, (4 T2/ ) WEa1) f(20) = €, (47952120 ) fy(22) W (), (4.20)

i) o)l = (ot (0 2 )wrta2a)

- 5(@’“2—;)% (q_k/sz)) . (4.21)
They satisfy Serre relation:
(P*a*22/21: P oo (p*a™%21/22;p")oc
X {(p*q*1Z/Z1;p*)oo(p*q*1Z/Z2;p*)oo(p*qz1/2;p*)oo(p*q21/2;p")oo@i(ﬁ)@i(@)@j(ﬁ’)
— 210" q 2/ 2150 oo (P*a T 22/ 23 9% ) oo (D¥ 021 /23 D% ) oo (P¥ 2/ 225 D™ ) s (21 )€ (2) € (22)

*

+(p q_1Z1/Z;p*)oo(p*q_1Z2/Z;p*)oo(p*QZ/zup*)oo(p*qZ/ZQ;p*)ooej(Z)ei(Zﬂei(Zz)}
+ (21 22) =0, for A;;=-1, (4.22)
(pa2z2/21 : P)oo(Pa*21/22; P)so

X {(qu/Zl;p)oo(qu/Zz;p)oo(pq_1Z1/Z;p)oo(pq_1Z1/z;p)oofi(Zl)fi(@)fj(Z)

— [2(paz/z1;P) oo (Paz2/ 2 D)oo (P4~ 21 /2 P)oo(Pa ™ 2/ 225 D)oo fi(21) £5(2) filz2)

+ (P21 /2 D)oo (pa22/ % D)oo (pa ™ 2/ 213 D)oo (P~ 2/223D)oc 5 (2)fi (21) fi(22) |

+ (21 22) =0, for A;;=-1. (4.23)

Following Refs. 7 and 12, we introduce the Heisenberg algebra H generated by
the following P;, Q; (1<i < N —1):

A
P Qs = 52 (424)

Definition 4.5. Let us define the bosonic operators Fj(z), Fi(z), HX(z) €
Uy(sln)@H (1S3 < N — 1) by

P—1

Ei(z) = e1(2)e*@iz= | (4.25)
Fi(z) = fi(2)2" 7, (4.26)

hi+P;—1  Pj—1

HE (2) = UE () Qg™ (¢F00)2) 7 7

3

r

(4.27)
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Theorem 4.6. The bosonic operators E;(z), Fy(2), HE(2) (1 <4 < N —1) satisfy
the following commutation relations:

Aij Aij
|:U1 — Uy — T’j] El(zl)EJ (22) = |:U1 — Uz + T)j:| Ej (Zg)Ei(Zl) s (428)
Ai Aij
|:U1 — ug + TJ:| Fl(zl)FJ(ZQ) = |:U1 — Uy — T’j:| Fj(Zg)Fi(Zl), (429)
A; A;
{Ul —ug + ;]T [ul —ug — 2’JL*H3[(21)HJ' (22)
Aij Aij
~ [ = 2] e+ B2] EEE ), (4.30)
A; k Ak _
|:U1 —ug + 2” - §L [ul —uy — Tj + §]T*H;r(21)Hj (22)
Aii  k A k _
= l:ul — U — TJ - §:| |:U1 —ug + TJ + §:| *Hj (ZQ)Hj(zl) ) (4'31)
kA
|:U1 — Uz + Z — Z)J:| Hf(zl)EJ(ZQ)
kA
= |:u1 — U + Z + 2’]:| Ej (ZQ)H,L:E(Zl) 5 (432)
kA
|:U1 — U2 F Z + 2’J:| Hf(zl)Fj(zg)
kA
= |:u1 — Uz F Z — 2’]:| Fj(ZQ)Hij:(Zl) R (433)

[Ei(21), Fj(22)] = S — <5(qkﬁ>H¢+ (q*%m)

- 5(qkﬁ)H[ (qug)) . (4.34)
z2
They satisfy Serre relation:
1
21 T (P* P22/t P ) (PRG 221/ 225 D)oo
1

x {25* 2T (g e 2 ) o (PR 2 223D )

X (p"q21/2;0% )00 (P"q21/ 2507 ) oo Bi(21) Ei(22) Ej (2)

— 21(p*q 2/ 2150 oo (" q 22/ 21 P%) 0

X (p*qz1/20%)0o (D" 2/ 22: D™ )0 Ei (21) E; (2) Ei (22)
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2 (0T e /20 ) (00 22/ 7)o

X (07022150 oo 0702/ 229" oo B (2) Ei(21) Ei(22) |

+(z1 > 22) =0, for A;; =-1, (4.35)

27 (P 22/ 21 D)o (P° 21/ 22 D)oo

X {2%25%(p(JZ/zl;p)oo(qu/Zz;p)m

X (pq~ 121/ 2 D)oo (P 21/ 23 D)oo Fi(21) Fi(22) Fy(2)

— [2](pgz /215 p) o (Paz2/ 2 P) o

X (pq~ 121/ 2 D)oo (P 2/ 22; D)o Fi(21) Fj (2) F(22)

+ 2] 2% (pgz1/ 2 D)oo P22/ 2 D)oc

X (a2 /215 )oe (00 2/ 223 D)oo Fy () Fi(21) Fi(22) |

+ (21 22)=0, for A;; =-1. (4.36)
Now we have constructed level k free field realization of Drinfeld current E;(z),

Fi(2) and HE(2) for the elliptic algebra Uq7p(sT]\V).12’13

4.2. Screening current

In this section, we study the screening current for Uyp(sly). In Ref. 7, it was
recognized that the screening current of Uy, p(slg) was exactly the same as those of
U, (812) Hence we select the same definition of screening current of U, (sl ~N) (Ref. 19)
as the screening current of Uy, p(slN)

e
(g—q71)z

N
x« 3 :ev”lvﬂ'(qN*jz)( (N z) _ e—a;‘*%qN*fz))

j=i+1

e (®)

x eZisip (BT @ T )=l gV T )

Proposition 4.7. The bosonic operator S;(z), E;(z), Fi(z) (1 £ i< N —1) satisfy

the following commutation relations:

s

5 Si(21)8j(22)

k+N

4,9

A
= [ul 2’ ] S;(22)8i(21) ~ reg., (4.37)
k+N
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Aig
- 5] BB
r—k

A;j

= [ul —ug + 2”} E;(22)E;(z1) ~ reg., (4.38)
r—k
A'L,j
ur —uz + = | Fi(z1)Fj(z2)

Al,]
= (U1 — U2 — T Fj(ZQ)Fi(Zl) ~reg., (439)
Ei(Zl)Sj(Zg) = SJ(ZQ)El(Zl) ~ reg., (440)

Fi(21)S;(22)
= SJ(ZQ)E(Zl) ~ reg. + 5i7j X ;HN&)ZQ
x < : celn0 miijquEN‘n‘Zgn’ﬁ(qé+pz logZQ)Ui(Zz)Z;ﬁ# :) '
zZ1 — 22
(4.41)
1 The symbol ~ reg. means eqality modulo regular function.

The equalities (4.28)—(4.38) hold in “~ reg. sense. The exceptional cases are

3 (4.34) and (4.41), which do not exist inside regular function. It seems to be possible
to construct three kind of infinitly many commutative operators, which are based
5 on the commutation relations (4.37)-(4.39).2325
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19 Appendix A. Construction of Dressing Operators U?(z), U*!(2)

In this appendix, we explain a systematic way to find the dressing operators U(z)
and U*¥(z) associated with the elliptic algebra U, ,(sly). Wakimoto realization is
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not symmetric with Cartan subalgebra. In other words, Wakimoto realization of
Drinfeld current E+(z) is very different from those of E~¢(z). The realization of
E+(z) is simpler than those of E~%(z). Hence it is better to consider the dressing
operator U*!(z) associated with E7(z) at first. We construct the dressing oper-
ator U*(z) by products of the basic operator B57(z). The commutation relation
between Ej“(z) and B! (2) are complicated. Hence we prepare auxiliary operators

Bi” () which commute with at most every Drinfeld current E," *(2):
B (2), Ef (22)] £ 0, (B (2), B M (z2)] =0, for (kD) # (i.5).
(A1)

For example, the explicit formulae of Bj_” (z) for Uq7p(s/12) are given as following

B(2) = BXP(2)BY (g )B g 22,

B (2) = B (2)BL (g1 9)BE (7 2)BE (a7 ) B2 (02) B2 (2)
BE(2) = B ()BT (a ' ),

B () = B ()B (a7 )B (a7 ) B2 (a2) B2 (2)

B2Y(z) = B2 (2)B (¢ 2)B (q2),

1 The remaining noncommutative commutation relation is given by

x —1 *
= sig( g P G 22/2130 )00 privi i1, \ ptiel
EF=Y)B™ (¢ 1z1=( B (¢ e BT (7).
7 (2B ) b aalmip ) Ot ( VE; (1)
For simplicity, we demonstrate this construction in Uq7p(s/12) case. The commuta-
tion relation between : e’ (*1) : and B (22) is exactly the same as those between

:ef17 (1) : and B3 (z3). Hence, in what follows, we can regard
VB R)

7' (2)+61% (2)

~e 5,

(2)
(2)
E;r’2(2) ~ 1B (@2)+01 (2) =12 (a2) :
(2)
(2) ~ 17 (@B (@) +03(2) b (a2)

EF3(2) ~ 1 @D ()0 (02) 108 @) T (a%)

There exists lexicographical ordering structure for index (i, j) of bj;/ inside E+*(z).
Hence we assume the formulae of B}’ (z) as follows:

~ . . . + - .
B =B x [ BT TE )T A
(i,j()’z2§€=l)
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1 Here mil € Z and eil € N. Here (4,7) < (k,1) means the lexicographical ordering,
ie. (1,2) < (1,3) < (1,4) < (2,3) < (2,4) < (3,4).
3 e Let us determine B%'%(z) = Bi'%(z) x ---. In order to satisfy the commu-
tativity [B5'%(z1), E{*(22)] = 0, the auxiliary operator should be B3'%(z) =
5 Bi*2(2)B:*3(¢7z) x ---. Upon this assumption, the commutativity [B%'?(z1),
E;%(22)] = 0 holds automatically. In order to satisfy the commutativity
7 [B:12(z1), Ef*(22)] = 0, the auxiliary operator should be Bi%(z) =
B2 (z)B3'3 (¢~ 2) B3 (¢ ?2) x- - - . Upon this assumption, the commutation rela-
9 tion [B12(z1), By *(29)] = 0 and [B:2(21), Ef*(22)] = 0 hold automatically.
Hence we conclude B12(z) = Bi12(2)B:13 (¢ 2) B (¢~ 22). The auxiliary oper-
11 ator B (2) is determined as the same manner.
e Let us determine B%13(z) = B3!3(2) x ---. Because of the assumption (A.2),
13 commutativity [B%'3(z1), E;"(22)] = 0 holds. In order to satisfy the commuta-
tivity [B3'%(z1), By *(22)] = 0, the auxiliary operator should be B!3(z) =
15 B3'3(2)B3?3(q712)B**3(qz) x - - . In order to satisfy the commutativity [B’j_l?’ (#1),
E[?(z)] = 0, the dressing operator should be l’;’j}?’(z) = B3(2)B*3(q7'2)
17 B*%3(q2)B*4(q'2) x ---. In order to satisfy the commutativity [B%'3(z1),
Ef?(z)] = 0, the auxiliary operator should be 3113(2) = Bi13(2)B*3(q7'2)
19 Bi%(qz)Bj_ng’l2)3124((]’22)8?4(2) X -+-. Upon these assumptions, the com-
mutativity [B*13(z1), B4 ®(22)] = 0 holds, automatically. Hence we conclude
21 BilB(z) = B3(2)B3%(q7 1 2)B?3(q2) B (¢ 2) B34 (¢ %2) B*?4(2). The auxil-
iary operator Bf’iJrz(z) is determined in the same manner.
23 o Let us determine 1’5’114(z) = B31(z) x ---. Because of the assumption (A.2), the
commutation relations [B'*(z1), E*!(22)] = [Bi(21), E*?(22)] = 0 hold. In
25 order to satisfy the commutativity [5’114(21), B2 ()] = 0, the auxiliary opera-
tor should be 5’114(z2 = BiM(2)B**(¢7'2)B***(¢z) x ---. In order to satisfy
27 the commutativity [Bi'*(z1), E; 3(23)] = 0, the dressing operator should be
B:(2) = B (2)B52 (¢ 2) B4 (q2) B34 (g2 2)B*4(2). The dressing operator
29 B3 (2) is determined as the same manner.

We have determined the auxiliary operators lg’:_j (z) for Uq7p(s/12).

As you have seen the above, the lexicographical ordering structure inside E7¢(2)
plays an important role in construction of the auxiliary operator l;’j_” (z). As the
same manner as the above, we have the explicit formulae of the auxiliary operator
Bf’j (z) for the elliptic algebra Uq7p(sT]\V) as follows:

j—1 N j—1 N
Biu] (Z) _ H H Bis,t(qwrg—sftz) H HB*_s,t(qz+g+2fsftz) ; (A?))
s=i t=j s=i+1 t=j

We have the commutation relation
Op (g7 21/22) B (20) B (20) B (22) BX 1 (2)

= 4710y (q21/22) B} (22) By (20) B () B (1) . (A4)
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Let us set the auxiliary operator B*/(z) = [[/Z Ht_j B (gt ) [T,
Hi\’:j B3> (gi+i+2=57t2). Considering Eq. (A.4) and the structure of Cartan matrix
of the classical sy, we set the dressing operator

1—1 1+1
U*z HB*szrl jZ *]z+l J 2 HB*]z J— 1 HB*]z+l( j—1 ) (A5)
j=1 j=1

1 Let us set &;(2) = U*(2)ETi(z) (1 £ i < N — 1). We have the commutation
relations

3 Op+ (g~ 19 21/ 20)E:1(21)€(22) = ¢ 91O p+ (¢ 21/ 22)E;(22)Ei(21) -

Clearing up overlap, we have

0*(z (HB*““ 2 )B*J’”(W@)Bf”“(fiz)B*““(q 2)

N
. ( I1 Bi”(q-ﬂ‘“z)B*”“(q—ﬁ?z)).

j=i+2

Next we consider the dressing operator U’(z). The structure of E~(z) is more
complicated than those of ET#(z). It is difficult to use lexicographical ordering
structure for E~%(2). Now let us go back to the explicit formulae of the dressing
operator for Uq,p(s/lg), (4.11)—(4.14).%! There exists “duality” relation B*”( z)

Bf&j(qfsz) between the dressing operators U*!(z) and U(z) for Uq’p(Slg,). Hence
we set

i—1
ﬁz(z) — ( H Béi—&-l (q—2+jz)Bi,i(q—1+jz)> Bi’H_l (q—2+iz)Bz 41 (qzz)

j=1

J=i+2

Let us set e;(2), fi(2), ¥F(2) 1 <i< N —1) by
ei(2) = U™ (2)ET(2),
filz) = BT (2)U'(2),

UH(z) = U (qk2) ot (U7 (478

[V B
I
—

where we have set

5 U*(z) = ﬁ”(z)A*i(qsiz), Ul(z) = ( YA (g% z) (s; €R).
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1 By necessary condition on commutation relations we get the parameters s; = %

Now we have got conjecturous formulae of the dressing operators U*(z) and U*
3 Using App. B, we can show every commutation relations of e;(z), fi(z) and \Ili

(2)-
(2)

Z),

by direct calculation. It seems that the method explained above can be applied to
5 the elliptic algebra U, ,(g) for arbitrary g.

Appendix B. Normal Ordering

In this appendix we summarize the normal ordering of the basic operators:

. eﬁi’j (21)

P27 (21)

:eﬁé’j(’zl)

: eﬁij (zl)

eV (21).

: Bf’j (ZQ)

by (1)

Bi’j (2’1) .

B (z) e

B (z)

B (z) :e
Bi;j (2’1) .

B (z)

L By (29)
: Bf’j (ZQ)

P B (2)

P B (2)

P17 (z2) .

By (22) .

:eﬂ-‘;’j(ﬁ):

B (22) .
I (22) .

e

b1 (22) .

e -

:eajf(”) :

: Bf’j (ZQ) =

(@ /067 )
(P 222157 )
(qQT* 12:2/217 21n*)oo
(Pt 120/215% oo
(@ " 122/215 6% oo
(¢ 322/215¢% )oo |
(@% " '22/21; % oo
(¢*" B22/213¢* )oo |
(@® 22/21: 6% o
(¢ 222/215¢% )oo |
(¢ " 'za/21567 )2

P 20/ 2107 )oo (7 P22/ 2157 )

2r—k—1
q-" za/21; ¢

@ 2y [z

oo
Moo’
)

(
(
( q?
Lo
: (q27’ k+12;2/2;1 q
(
( q
(
(

(]2r7}’€7122/zl7 2r o
T b)
)oo
q2r—k—1z2/zl’ 27’)00
q2r k— 322/21 r)oo’
(]2r7}’€7122/zl7 QT)OO
q2r k— 32’2/2’1 qQT)oo ’
(¢*F22/215 " )0

§ (®" % 225/21; 4% ) oo

(q2r7k7122/zl; q2r)go

(g

T (@R 2021547 ) 0o (62T R 322/ 21547 ) o

2r+N+A; ; 22/2,1; qQT)OO(qu—Qk—N—Ai,j ZQ/Zl; qQT)oo

" g

21”+N—Ai,]‘ ZQ/Zl; qQT)Oo(QQT_Qk_N-FAi’j ZQ/Zl; qQT)Oo

)
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2r*+N+A 2r*—2k—N—A

(¢ Y2/ 67 )solg 222/ 6% oo
(q2r*+N7Ain ZQ/Zl; qQT*)w(q2T*72k7N+Ai’j 22/21; qQT*)OO )

(¢%22/215 %%, p*)%

B (21)BX (25) = . _
(21)B (=) (@5 222/ 215 %%, 4% ) oo (% 222/ 215 %%, ¥ ) o
» (" 220/ 215 6%%, ¢*") oo (6 222/ 213 4%%, %" ) o
(qFz2/21: 4%, ¢*)% ’
Ao (o) A (zg) = 2 O 2023 2 P Yoo A0z 2047 47 )
' 2 (PR A 2 21 2R, 2 Voo (N T A 2a /21502 2 oo
(@A 2y /213670, @7 ) oo (4 VA 20 /21567, 4T

(qPFHNFAii 20 /215 7%, 27 ) oo (N A09) 20/ 215 2%, 77 ) oo

Here we have used the notation

oo

(zip1,p2)00 = [ (1—pi'p522).

ni,na=0
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